A Strategy to Reduce Red Marrow Dose for Intraperitoneal Radioimmunotherapy I
ثبت نشده
چکیده
The aim of this study was to determine whether shorter-lived radionuclides can reduce red marrow (RM) toxicity for i.p. radioimmunotherapy (RIT). The potential radionuclides, which included Lu-177, 1-131, Y-90, Re-186, Re-188, and Ho-166, were attached to antibody CC49. Each radiopharmaceutical was assumed to have identical in vivo pharmacokinetics. Blood and whole body retention data acquired from 26 patients who received i.p. RIT with Lu-177 CC49 were used as input. The average biological half-time of Lu-177 CC49 in the whole body was 280 h, and the average Lu-177 concentration in plasma increased to a maximum at 2 days postinfusion, followed by steady clearance. The residence time and RM doses were calculated for each radionuclide. In the current model, Re-188 was found to deliver the lowest RM dose, primarily because it had the shortest half-life, whereas Y-90 delivers the highest dose. Re-188 delivers 60% of the RM dose as compared with Lu-177 and can increase the dose to metastatic sites in the i.p. space by a similar factor. Based on limiting the RM dose to 200 cGy, the maximum administered activity of each radionuclide is as follows: (a) 106 mCi, Lu-177; (b) 58 mCi, 1-131; (c) 34 mCi, Y-90; (d) 70 mCi, Re-186; (e) 169 mCi, Re-188; and (f) 110 mCi, Ho-166. Because of the delayed steady leakage of radiopharmaceuticals from the i.p. cavity to the plasma, short-lived radionuclides may offer special advantages for i.p. RIT.
منابع مشابه
A strategy to reduce red marrow dose for intraperitoneal radioimmunotherapy.
The aim of this study was to determine whether shorter-lived radionuclides can reduce red marrow (RM) toxicity for i.p. radioimmunotherapy (RIT). The potential radionuclides, which included Lu-177, I-131, Y-90, Re-186, Re-188, and Ho-166, were attached to antibody CC49. Each radiopharmaceutical was assumed to have identical in vivo pharmacokinetics. Blood and whole body retention data acquired ...
متن کاملIntraperitoneal radioimmunotherapy for ovarian cancer.
Twenty-eight patients with assessable residual ovarian cancer after cytoreductive surgery and chemotherapy received intraperitoneal I-131 labelled monoclonal antibodies. There was no response in eight patients with tumour nodules greater than 2 cm, a partial response in two of the 15 patients with tumour nodules less than 2 cm, and a complete response in three of the other five patients with po...
متن کاملBone marrow dosimetry using 124I-PET.
UNLABELLED Bone marrow is usually dose-limiting for radioimmunotherapy. In this study, we directly estimated red marrow activity concentration and the self-dose component of absorbed radiation dose to red marrow based on PET/CT of 2 different (124)I-labeled antibodies (cG250 and huA33) and compared the results with plasma activity concentration and plasma-based dose estimates. METHODS Two gro...
متن کاملRed marrow radiation dose adjustment using plasma FLT3-L cytokine levels: improved correlations between hematologic toxicity and bone marrow dose for radioimmunotherapy patients.
UNLABELLED Calculated red marrow absorbed dose in patients receiving radioimmunotherapy (RAIT) has not been highly predictive of the dose-limiting hematologic toxicity observed in many patient populations studied. Because patients receiving the same red marrow dose often experience different grades of toxicity, other factors might help predict the different grades of toxicity observed. One such...
متن کاملIntraperitoneal radioimmunotherapy with a humanized anti-TAG-72 (CC49) antibody with a deleted CH2 region.
The application of intraperitoneal (i.p.) radioimmunotherapy to treat i.p. tumor loci has been limited by bone marrow toxicity secondary to circulating radiolabeled antibodies. The generation of novel genetically engineered monoclonal antibodies, which can achieve high tumor uptake and rapid blood clearance, should enhance the therapeutic index of i.p. radioimmunotherapy. In this regard, a nove...
متن کامل