Chronic Co-Administration of Sepiapterin and L-Citrulline Ameliorates Diabetic Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury in Obese Type 2 Diabetic Mice.

نویسندگان

  • Shelley L Baumgardt
  • Mark Paterson
  • Thorsten M Leucker
  • Juan Fang
  • David X Zhang
  • Zeljko J Bosnjak
  • David C Warltier
  • Judy R Kersten
  • Zhi-Dong Ge
چکیده

BACKGROUND Diabetic heart disease is associated with tetrahydrobiopterin oxidation and high arginase activity, leading to endothelial nitric oxide synthase dysfunction. Sepiapterin (SEP) is a tetrahydrobiopterin precursor, and L-citrulline (L-Cit) is converted to endothelial nitric oxide synthase substrate, L-arginine. Whether SEP and L-Cit are effective at reducing diabetic heart disease is not known. The present study examined the effects of SEP and L-Cit on diabetic cardiomyopathy and ischemia/reperfusion injury in obese type 2 diabetic mice. METHODS AND RESULTS Db/db and C57BLKS/J mice at 6 to 8 weeks of age received vehicle, SEP, or L-Cit orally alone or in combination for 8 weeks. Cardiac function was evaluated with echocardiography. Db/db mice displayed hyperglycemia, obesity, and normal blood pressure and cardiac function compared with C57BLKS/J mice at 6 to 8 weeks of age. After vehicle treatment for 8 weeks, db/db mice had reduced ejection fraction, mitral E/A ratio, endothelium-dependent relaxation of coronary arteries, tetrahydrobiopterin concentrations, ratio of endothelial nitric oxide synthase dimers/monomers, and nitric oxide levels compared with vehicle-treated C57BLKS/J mice. These detrimental effects of diabetes mellitus were abrogated by co-administration of SEP and L-Cit. Myocardial infarct size was increased, and coronary flow rate and ± dP/dt were decreased during reperfusion in vehicle-treated db/db mice subjected to ischemia/reperfusion injury compared with control mice. Co-administration of SEP and L-Cit decreased infarct size and improved coronary flow rate and cardiac function in both C57BLKS/J and db/db mice. CONCLUSIONS Co-administration of SEP and L-Cit limits diabetic cardiomyopathy and ischemia/reperfusion injury in db/db mice through a tetrahydrobiopterin/endothelial nitric oxide synthase/nitric oxide pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined postconditioning with ischemia and cyclosporine-A restore oxidative stress and histopathological changes in reperfusion injury of diabetic myocardium

Objective(s): Chronic diabetes impedes cardioprotection in reperfusion injury and hence protecting the diabetic heart would have important outcomes. In this study, we evaluated whether combined postconditioning with ischemia and cyclosporine-A can restore oxidative stress and histopathological changes in reperfusion injury of the diabetic myocardium. Materials and Methods: Streptozocin-induced ...

متن کامل

تاثیر تروگزروتین بر پراکسیداسیون لیپیدی و آسیب بافتی ناشی از آسیب ایسکمی- رپرفیوژن در قلب موش دیابتی

 Background: Diabetes is a main risk factor of ischemic heart disease. Troxerutin, a natural bioflavonoid rutin, has many biologic properties, such anti-oxidative and anti-inflammatory effects. The purpose of this study was to investigate the interaction of diabetes with the protective effect of troxerutin on lipid peroxidation and tissue injury induced by myocardial ischemia reperfusi...

متن کامل

Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling

Enhancing mitochondrial biogenesis and reducing mitochondrial oxidative stress have emerged as crucial therapeutic strategies to ameliorate diabetic myocardial ischemia/reperfusion (MI/R) injury. Melatonin has been reported to be a safe and potent cardioprotective agent. However, its role on mitochondrial biogenesis or reactive oxygen species (ROS) production in type 1 diabetic myocardium and t...

متن کامل

Anti-Inflammatory and Cardioprotective Effects of Tadalafil in Diabetic Mice

BACKGROUND Insulin resistance impairs nitric oxide (NO) bioavailability and obesity promotes a state of chronic inflammation and damages the vascular endothelium. Phosphodiesterase-5 inhibitors restore NO signaling and may reduce circulating inflammatory markers, and improve metabolic parameters through a number of mechanisms. We hypothesized that daily administration of the PDE-5 inhibitor, ta...

متن کامل

Caffeic acid phenethyl amide ameliorates ischemia/reperfusion injury and cardiac dysfunction in streptozotocin-induced diabetic rats

BACKGROUND Caffeic acid phenethyl ester (CAPE) has been shown to protect the heart against ischemia/reperfusion (I/R) injury by various mechanisms including its antioxidant effect. In this study, we evaluated the protective effects of a CAPE analog with more structural stability in plasma, caffeic acid phenethyl amide (CAPA), on I/R injury in streptozotocin (STZ)-induced type 1 diabetic rats. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation. Heart failure

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2016