The genetics of phenotypic plasticity. XIII. Interactions with developmental instability
نویسنده
چکیده
In a heterogeneous environment, natural selection on a trait can lead to a variety of outcomes, including phenotypic plasticity and bet-hedging through developmental instability. These outcomes depend on the magnitude and pattern of that heterogeneity and the spatial and temporal distribution of individuals. However, we do not know if and how those two outcomes might interact with each other. I examined the joint evolution of plasticity and instability through the use of an individual-based simulation in which each could be genetically independent or pleiotropically linked. When plasticity and instability were determined by different loci, the only effect on the evolution of plasticity was the elimination of plasticity as a bet-hedging strategy. In contrast, the effects on the evolution of instability were more substantial. If conditions were such that the population was likely to evolve to the optimal reaction norm, then instability was disfavored. Instability was favored only when the lack of a reliable environmental cue disfavored plasticity. When plasticity and instability were determined by the same loci, instability acted as a strong limitation on the evolution of plasticity. Under some conditions, selection for instability resulted in maladaptive plasticity. Therefore, before testing any models of plasticity or instability evolution, or interpreting empirical patterns, it is important to know the ecological, life history, developmental, and genetic contexts of trait phenotypic plasticity and developmental instability.
منابع مشابه
P5: Memory and Talent
A person, who is talented, performs in a certain capacity above the norm. Talent is different from intelligence which is a response to a circumstance using knowledge and skill. The attributes of talent are exceptional memory, rapid processing speed, and high motivation, an affinity for learning, creativity and optimal cognition. There is some proof suggests that certain aspects of talent are re...
متن کاملThe Genetics of Phenotypic Plasticity. XIV. Coevolution.
Plastic changes in organisms' phenotypes can result from either abiotic or biotic effectors. Biotic effectors create the potential for a coevolutionary dynamic. Through the use of individual-based simulations, we examined the coevolutionary dynamic of two species that are phenotypically plastic. We explored two modes of biotic and abiotic interactions: ecological interactions that determine the...
متن کاملCosts and limits of phenotypic plasticity: Tests with predator-induced morphology and life history in a freshwater snail
Potential constraints on the evolution of phenotypic plasticity were tested using data from a previous study on predator-induced morphology and life history in the freshwater snail Physa heterostropha. The benefit of plasticity can be reduced if facultative development is associated with energetic costs, developmental instability, or an impaired developmental range. I examined plasticity in two...
متن کاملToward a population genetic framework of developmental evolution: the costs, limits, and consequences of phenotypic plasticity.
Adaptive phenotypic plasticity allows organisms to cope with environmental variability, and yet, despite its adaptive significance, phenotypic plasticity is neither ubiquitous nor infinite. In this review, we merge developmental and population genetic perspectives to explore costs and limits on the evolution of plasticity. Specifically, we focus on the role of modularity in developmental geneti...
متن کاملThe phenotypic variance gradient – a novel concept
Evolutionary ecologists commonly use reaction norms, which show the range of phenotypes produced by a set of genotypes exposed to different environments, to quantify the degree of phenotypic variance and the magnitude of plasticity of morphometric and life-history traits. Significant differences among the values of the slopes of the reaction norms are interpreted as significant differences in p...
متن کامل