A Class of Inexact Variable Metric Proximal Point Algorithms
نویسندگان
چکیده
For the problem of solving maximal monotone inclusions, we present a rather general class of algorithms, which contains hybrid inexact proximal point methods as a special case and allows for the use of a variable metric in subproblems. The global convergence and local linear rate of convergence are established under standard assumptions. We demonstrate the advantage of variable metric implementation in the case of solving systems of smooth monotone equations by the proximal Newton method.
منابع مشابه
A Class of Variable Metric Decomposition Methods for Monotone Variational Inclusions
We extend the general decomposition scheme of [32], which is based on the hybrid inexact proximal point method of [38], to allow the use of variable metric in subproblems, along the lines of [23]. We show that the new general scheme includes as special cases the splitting method for composite mappings [25] and the proximal alternating directions method [13, 17] (in addition to the decomposition...
متن کاملConvergence of an Iterative Scheme for Multifunctions on Fuzzy Metric Spaces
Recently, Reich and Zaslavski have studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In 2011, Aleomraninejad, et. al. generalized some of their results to Suzuki-type multifunctions. The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in fixed point theory. The importance of Banach ...
متن کاملW-convergence of the proximal point algorithm in complete CAT(0) metric spaces
In this paper, we generalize the proximal point algorithm to complete CAT(0) spaces and show that the sequence generated by the proximal point algorithm $w$-converges to a zero of the maximal monotone operator. Also, we prove that if $f: Xrightarrow ]-infty, +infty]$ is a proper, convex and lower semicontinuous function on the complete CAT(0) space $X$, then the proximal...
متن کاملNon-Archimedean fuzzy metric spaces and Best proximity point theorems
In this paper, we introduce some new classes of proximal contraction mappings and establish best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...
متن کاملA New Class of Interior Proximal Methods for Optimization over the Positive Orthant
In this work we present a family of interior proximal methods with variable metric for solving convex optimization problems under nonnegativity contraints. We propose an algorithm whose kernels are metrics generated by diagonal matrices updated in each step and the regularization parameters are conveniently determinated in each iteration to force the iterates to be interior points. We show the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 19 شماره
صفحات -
تاریخ انتشار 2008