Self-commutators of Toeplitz Operators and Isoperimetric Inequalities

نویسندگان

  • STEVEN R. BELL
  • TIMOTHY FERGUSON
چکیده

For a hyponormal operator, C. R. Putnam’s inequality gives an upper bound on the norm of its self-commutator. In the special case of a Toeplitz operator with analytic symbol in the Smirnov space of a domain, there is also a geometric lower bound shown by D. Khavinson (1985) that when combined with Putnam’s inequality implies the classical isoperimetric inequality. For a nontrivial domain, we compare these estimates to exact results. Then we consider such operators acting on the Bergman space of a domain, and we obtain lower bounds that also reflect the geometry of the domain. When combined with Putnam’s inequality they give rise to the FaberKrahn inequality for the fundamental frequency of a domain and the SaintVenant inequality for the torsional rigidity (but with non-sharp constants).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-commutators of composition operators with monomial symbols on the Bergman space

Let $varphi(z)=z^m, z in mathbb{U}$, for some positive integer $m$, and $C_varphi$ be the composition operator on the Bergman space $mathcal{A}^2$ induced by $varphi$. In this article, we completely determine the point spectrum, spectrum, essential spectrum, and essential norm of the operators $C^*_varphi C_varphi, C_varphi C^*_varphi$ as well as self-commutator and anti-self-commutators of $C_...

متن کامل

Toeplitz and Hankel Operators and Dixmier Traces on the unit ball of C

We compute the Dixmier trace of pseudo-Toeplitz operators on the Fock space. As an application we find a formula for the Dixmier trace of the product of commutators of Toeplitz operators on the Hardy and weighted Bergman spaces on the unit ball of C. This generalizes an earlier work of Helton-Howe for the usual trace of the anti-symmetrization of Toeplitz operators.

متن کامل

The Semi-commutator of Toeplitz Operators on the Bidisc

In this paper we characterize when the semi-commutator TfTg − Tfg of two Toeplitz operators Tf and Tg on the Hardy space of the bidisc is zero. We also show that there is no nonzero finite rank semi-commutator on the bidisc. Furthermore explicit examples of compact semi-commutators with symbols continuous on the bitorus T 2 are given.

متن کامل

On Commutators of Isometries and Hyponormal Operators

A sufficient condition is obtained for two isometries to be unitarily equivalent. Also, a new class of M-hyponormal operator is constructed

متن کامل

Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent

The aim of this paper is to establish the vector-valued inequalities for Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g∗μ-functions, and their commutators on the Herz-Morrey spaces with variable exponentMK̇ p,q(·)(R n). By applying the properties of Lp(·)(Rn) spaces and the vector-valued inequalities for Littlewood-Paley operators and their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012