Cytoskeletal remodeling and cellular activation during deformation of neutrophils into narrow channels.

نویسندگان

  • Belinda Yap
  • Roger D Kamm
چکیده

Neutrophils are subjected to mechanical stimulation as they deform into the narrow capillary segments of the pulmonary microcirculation. The present study seeks to understand the changes in the cytoskeletal structure and the extent of biological activation as a result of this process. Neutrophils were passed through narrow polycarbonate filter pores under physiological driving pressures, fixed, and stained downstream to visualize the F-actin content and distribution. Below a threshold capillary size, the cell remodeled its cytoskeleton through initial F-actin depolymerization, followed by recovery and increase in F-actin content associated with formation of pseudopods. This rapid depolymerization and subsequent recovery of F-actin was consistent with our previous observation of an immediate reduction in moduli with eventual recovery when the cells were subjected to deformation. Results also show that neutrophils must be retained in their elongated shape for an extended period of time for pseudopod formation, suggesting that a combination of low driving pressures and small capillary diameters promotes cellular activation. These observations show that mechanical deformation of neutrophils into narrow pulmonary capillaries have the ability to influence cytoskeletal structure, the degree of cellular activation, and migrational tendencies of the cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIGHLIGHTED TOPIC Biomechanics and Mechanotransduction in Cells and Tissues Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties

Yap, Belinda, and Roger D. Kamm. Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. J Appl Physiol 98: 1930–1939, 2005. First published January 7, 2005; doi:10.1152/japplphysiol.01226.2004.—Neutrophils traversing the pulmonary microcirculation are subjected to mechanical stimulation during their deformation into narro...

متن کامل

Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties.

Neutrophils traversing the pulmonary microcirculation are subjected to mechanical stimulation during their deformation into narrow capillaries. To better understand the time-dependant changes caused by this mechanical stimulus, neutrophils were caused to flow into a microchannel, which allowed simultaneous visualization of cell morphology and passive rheological measurement by tracking the Brow...

متن کامل

EFFECT OF ELECTRIC FIELD ON PD ACTIVITY AND DAMAGE INTO SOLID DIELECTRIC MATERIALS

Abstract – In this paper, the effect of applied electric field on the damage due to partial discharges activity into the surroundings dielectrics of a narrow channel encapsulated within the volume of a dielectric material is evaluated using a kinetic model based on Particle in Cell - Monte Carlo Collision (PIC-MCC) model. After application of an electric field across a dielectric material which...

متن کامل

p21-Activated Kinase (PAK) Regulates Cytoskeletal Reorganization and Directional Migration in Human Neutrophils

Neutrophils serve as a first line of defense in innate immunity owing in part to their ability to rapidly migrate towards chemotactic factors derived from invading pathogens. As a migratory function, neutrophil chemotaxis is regulated by the Rho family of small GTPases. However, the mechanisms by which Rho GTPases orchestrate cytoskeletal dynamics in migrating neutrophils remain ill-defined. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 99 6  شماره 

صفحات  -

تاریخ انتشار 2005