The Transverse Instability of Periodic Waves in Zakharov-Kuznetsov Type Equations
نویسنده
چکیده
In this paper, we investigate the instability of one-dimensionally stable periodic traveling wave solutions of the generalized Korteweg-de Vries equation to long wavelength transverse perturbations in the generalized Zakharov-Kuznetsov equation in two space dimensions. By deriving appropriate asymptotic expansions of the periodic Evans function, we derive an index which yields sufficient conditions for transverse instabilities to occur. This index is geometric in nature, and applies to any periodic traveling wave profile under some minor smoothness assumptions on the nonlinearity. We also describe the analogous theory for periodic traveling waves of the generalized Benjamin-BonaMahony equation to long wavelength transverse perturbations in the gBBM-Zakharov-Kuznetsov equation.
منابع مشابه
Solitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation
This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...
متن کاملSolution of the fractional Zakharov-Kuznetsov equations by reduced dierential transform method
In this paper an approximate analytical solution of the fractional Zakharov-Kuznetsov equations will be obtained with the help of the reduced differential transform method (RDTM). It is in-dicated that the solutions obtained by the RDTM are reliable and present an effective method for strongly nonlinear fractional partial differential equations.
متن کاملTransverse Nonlinear Instability of Solitary Waves for Some Hamiltonian Pde’s Frederic Rousset and Nikolay Tzvetkov
We present a general result of transverse nonlinear instability of 1-d solitary waves for Hamiltonian PDE’s for both periodic or localized transverse perturbations. Our main structural assumption is that the linear part of the 1d model and the transverse perturbation “have the same sign”. Our result applies to the generalized KP-I equation, the Nonlinear Schrödinger equation, the generalized Bo...
متن کاملUniversal geometric condition for the transverse instability of solitary waves
Transverse instabilities correspond to a class of perturbations traveling in a direction transverse to the direction of the basic solitary wave. Solitary waves traveling in one space direction generally come in one-parameter families. We embed them in a two-parameter family and deduce a new geometric condition for transverse instability of solitary waves. This condition is universal in the sens...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کامل