Information Retrieval, Imaging and Probabilistic Logic
نویسنده
چکیده
Imaging is a class of non-Bayesian methods for the revision of probability density functions originally proposed as a semantics for conditional logic. Two of these revision functions, standard imaging and general imaging, have successfully been applied to modelling information retrieval by Crestani and van Rijsbergen. Due to the problematic nature of a\direct" implementation of imaging revision functions, in this paper we propose their alternative implementation by representing the semantic structure that underlies imaging-based conditional logics in the language of a probabilistic (Bayesian) logic. Besides showing the potential of this \Bayesian" tool for the representation of non-Bayesian revision functions, recasting these models of information retrieval in such a general purpose knowledge representation and reasoning tool paves the way to a possible integration of these models with other more KR-oriented models of IR, and to the exploitation of generalpurpose domain-knowledge.
منابع مشابه
Conditional probabilistic reasoning without conditional logic
Imaging is a class of non-Bayesian methods for the revision of probability density functions originally proposed as a semantics for conditional logic. Two of these revision functions, Standard Imaging and General Imaging, have successfully been applied to modelling information retrieval (IR). Due to the problematic nature of a“direct” implementation of Imaging revision functions, we propose the...
متن کاملFactors Affecting Student's Scientific Information Retrieval based on Fuzzy Logic Method Compared to Traditional Method
Background and aim: The aim of this study was to identify the factors affecting on students' performance in information retrieval based on fuzzy logic method compared to traditional method. Materials and methods: This survey-descriptive study was performed using quantitative approach. The research population was 34 PhD students, and the researcher-made questionnaire was used. Data were analyzed...
متن کاملImproved Skips for Faster Postings List Intersection
Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...
متن کاملImproved Skips for Faster Postings List Intersection
Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...
متن کاملContent-Based Information Retrieval by Computation of Least Common Subsumers in a Probabilistic Description Logic
Due to the constantly growing number of information sources, intelligent information retrieval becomes a more and more important task. We model information sources by description logic (DL) terminologies. The commonalities of user-speci ed examples can be computed by the least common subsumer (LCS) operator. However, in some cases this operator delivers too general results. In this article we s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers and Artificial Intelligence
دوره 17 شماره
صفحات -
تاریخ انتشار 1998