Dynamic Bayesian diffusion estimation
نویسندگان
چکیده
The rapidly increasing complexity of (mainly wireless) ad-hoc networks stresses the need of reliable distributed estimation of several variables of interest. The widely used centralized approach, in which the network nodes communicate their data with a single specialized point, suffers from high communication overheads and represents a potentially dangerous concept with a single point of failure needing special treatment. This paper’s aim is to contribute to another quite recent method called diffusion estimation. By decentralizing the operating environment, the network nodes communicate just within a close neighbourhood. We adopt the Bayesian framework to modelling and estimation, which, unlike the traditional approaches, abstracts from a particular model case. This leads to a very scalable and universal method, applicable to a wide class of different models. A particularly interesting case – the Gaussian regressive model – is derived as an example.
منابع مشابه
Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملBayesian inference for stochastic kinetic models using a diffusion approximation.
This article is concerned with the Bayesian estimation of stochastic rate constants in the context of dynamic models of intracellular processes. The underlying discrete stochastic kinetic model is replaced by a diffusion approximation (or stochastic differential equation approach) where a white noise term models stochastic behavior and the model is identified using equispaced time course data. ...
متن کاملOn Bayesian Inference for Stochastic Kinetic Models using Diffusion Approximations
This paper is concerned with the Bayesian estimation of stochastic rate constants in the context of dynamic models of intra-cellular processes. The underlying discrete stochastic kinetic model is replaced by a diffusion approximation (or stochastic differential equation approach) where a white noise term models stochastic behaviour and the model is identified using equispaced time course data. ...
متن کاملQuantitative Analysis of Dynamic Contrast-Enhanced and Diffusion-Weighted Magnetic Resonance Imaging for Oncology in R
The package dcemriS4 provides a complete set of data analysis tools for the quantitative assessment of dynamic contrast-enhanced MRI. Image processing is provided for the ANALYZE and NIfTI data formats as inputs with all parameter estimates being output in NIfTI format. Estimation of T1 relaxation from multiple flip-angle acquisitions, using either constant or spatially-varying flip angles, is ...
متن کاملBayesian Estimation of Volatility with Moment-Based Nonlinear Stochastic Filters
This article adresses parameter estimation with moment-based stochastic filters that only heed the first two moments of the state densities. This approximation provides good results in numerous cases. However, due to missing linear correlation between diffusion parameters and expected states, Bayesian estimation of diffusion parameters such as volatility is not possible. While other filters ove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1204.1158 شماره
صفحات -
تاریخ انتشار 2012