Structure of the Chloroplast Ribosome: Novel Domains for Translation Regulation
نویسندگان
چکیده
Gene expression in chloroplasts is controlled primarily through the regulation of translation. This regulation allows coordinate expression between the plastid and nuclear genomes, and is responsive to environmental conditions. Despite common ancestry with bacterial translation, chloroplast translation is more complex and involves positive regulatory mRNA elements and a host of requisite protein translation factors that do not have counterparts in bacteria. Previous proteomic analyses of the chloroplast ribosome identified a significant number of chloroplast-unique ribosomal proteins that expand upon a basic bacterial 70S-like composition. In this study, cryo-electron microscopy and single-particle reconstruction were used to calculate the structure of the chloroplast ribosome to a resolution of 15.5 A. Chloroplast-unique proteins are visualized as novel structural additions to a basic bacterial ribosome core. These structures are located at optimal positions on the chloroplast ribosome for interaction with mRNAs during translation initiation. Visualization of these chloroplast-unique structures on the ribosome, combined with mRNA cross-linking, allows us to propose a model for translation initiation in chloroplasts in which chloroplast-unique ribosomal proteins interact with plastid-specific translation factors and RNA elements to facilitate regulated translation of chloroplast mRNAs.
منابع مشابه
Proteomic characterization of the small subunit of Chlamydomonas reinhardtii chloroplast ribosome: identification of a novel S1 domain-containing protein and unusually large orthologs of bacterial S2, S3, and S5.
To understand how chloroplast mRNAs are translated into functional proteins, a detailed understanding of all of the components of chloroplast translation is needed. To this end, we performed a proteomic analysis of the plastid ribosomal proteins in the small subunit of the chloroplast ribosome from the green alga Chlamydomonas reinhardtii. Twenty proteins were identified, including orthologs of...
متن کاملRecognition of novel and divergent higher plant chloroplast ribosomal proteins by Escherichia coli ribosome during in vivo assembly.
Architecture of higher plant chloroplast ribosomes involves additional protein domains over that found in the Escherichia coli ribosome, although the rRNAs in these two kinds of ribosomes are very similar in length and sequence (Subramanian, A. R. (1993) Trends Biochem. Sci. 18, 177-180). Here, we show that two chloroplast-specific protein domains (a novel chloroplast ribosomal protein of the 3...
متن کاملRegulation of chloroplast translation: interactions of RNA elements, RNA-binding proteins and the plastid ribosome.
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs into proteins, and genetic studies have identified cis-acting RNA elements and trans-acting protein factors required for chloroplast translation. Biochemical analysis has identified both general and specific mRNA-binding proteins as components of the regulation of chloroplast translation, and has reveale...
متن کاملChloroplast elongation factor ts pro-protein is an evolutionarily conserved fusion with the s1 domain-containing plastid-specific ribosomal protein-7.
The components of chloroplast translation are similar to those of prokaryotic translation but contain some additional unique features. Proteomic analysis of the Chlamydomonas reinhardtii chloroplast ribosome identified an S1-like protein, plastid-specific ribosomal protein-7 (PSRP-7), as a stoichiometric component of the 30S subunit. Here, we report that PSRP-7 is part of a polyprotein that con...
متن کاملUnique localization of the plastid-specific ribosomal proteins in the chloroplast ribosome small subunit provides mechanistic insights into the chloroplastic translation
Chloroplastic translation is mediated by a bacterial-type 70S chloroplast ribosome. During the evolution, chloroplast ribosomes have acquired five plastid-specific ribosomal proteins or PSRPs (cS22, cS23, bTHXc, cL37 and cL38) which have been suggested to play important regulatory roles in translation. However, their exact locations on the chloroplast ribosome remain elusive due to lack of a hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007