Timing of cortical interneuron migration is influenced by the cortical hem.
نویسندگان
چکیده
Cerebral cortical γ-aminobutyric acid (GABA)ergic interneurons originate from the basal forebrain and migrate into the cortex in 2 phases. First, interneurons cross the boundary between the developing striatum and the cortex to migrate tangentially through the cortical primordium. Second, interneurons migrate radially to their correct neocortical layer position. A previous study demonstrated that mice in which the cortical hem was genetically ablated displayed a massive reduction of Cajal-Retzius (C-R) cells in the neocortical marginal zone (MZ), thereby losing C-R cell-generated reelin in the MZ. Surprisingly, pyramidal cell migration and subsequent layering were almost normal. In contrast, we find that the timing of migration of cortical GABAergic interneurons is abnormal in hem-ablated mice. Migrating interneurons both advance precociously along their tangential path and switch prematurely from tangential to radial migration to invade the cortical plate (CP). We propose that the cortical hem is responsible for establishing cues that control the timing of interneuron migration. In particular, we suggest that loss of a repellant signal from the medial neocortex, which is greatly decreased in size in hem-ablated mice, allows the early advance of interneurons and that reduction of another secreted molecule from C-R cells, the chemokine SDF-1/CXCL12, permits early radial migration into the CP.
منابع مشابه
Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that ...
متن کاملCortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex.
Proper assembly of cortical circuitry relies on the correct migration of cortical interneurons from their place of birth in the ganglionic eminences to their place of terminal differentiation in the cerebral cortex. Although molecular mechanisms mediating cortical interneuron migration have been well studied, intracellular signals directing their migration are largely unknown. Here we illustrat...
متن کاملGlycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration
Glycine receptors (GlyRs) are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in ...
متن کاملEarly B-cell factors 2 and 3 (EBF2/3) regulate early migration of Cajal–Retzius cells from the cortical hem
Cajal-Retzius (CR) cells play a crucial role in the formation of the cerebral cortex, yet the molecules that control their development are largely unknown. Here, we show that Ebf transcription factors are expressed in forebrain signalling centres-the septum, cortical hem and the pallial-subpallial boundary-known to generate CR cells. We identified Ebf2, through fate mapping studies, as a novel ...
متن کاملP29: Changes in Thickness and Intelligence
Neuroimaging research indicates that human intellectual ability is associated to brain structure including the thickness of the cerebral cortex. Most studies show that general intelligence is positively associated with cortical thickness in areas of association cortex allocated throughout both brain hemispheres. Changes in cortical thickness over time have been related to intelligence, but whet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2011