Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors.

نویسندگان

  • P Rochard
  • A Rodier
  • F Casas
  • I Cassar-Malek
  • S Marchal-Victorion
  • L Daury
  • C Wrutniak
  • G Cabello
چکیده

To characterize the regulatory pathways involved in the inhibition of cell differentiation induced by the impairment of mitochondrial activity, we investigated the relationships occurring between organelle activity and myogenesis using an avian myoblast cell line (QM7). The inhibition of mitochondrial translation by chloramphenicol led to a potent block of myoblast differentiation. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone and oligomycin, which affect the organelle at different levels, exerted a similar influence. In addition, we provided evidence that this phenomenon was not the result of an alteration in cell viability. Conversely, overexpression of the mitochondrial T3 receptor (p43) stimulated organelle activity and strongly potentiated myoblast differentiation. The involvement of mitochondrial activity in an actual regulation of myogenesis is further supported by results demonstrating that the muscle regulatory gene myogenin, in contrast to CMD1 (chicken MyoD) and myf5, is a specific transcriptional target of mitochondrial activity. Whereas myogenin mRNA and protein levels were down-regulated by chloramphenicol treatment, they were up-regulated by p43 overexpression, in a positive relationship with the expression level of the transgene. We also found that myogenin or CMD1 overexpression in chloramphenicol-treated myoblasts did not restore differentiation, thus indicating that an alteration in mitochondrial activity interferes with the ability of myogenic factors to induce terminal differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIRT3, a Mitochondrial NAD+-Dependent Deacetylase, Is Involved in the Regulation of Myoblast Differentiation

Sirtuin 3 (SIRT3), one of the seven mammalian sirtuins, is a mitochondrial NAD+-dependent deacetylase known to control key metabolic pathways. SIRT3 deacetylases and activates a large number of mitochondrial enzymes involved in the respiratory chain, in ATP production, and in both the citric acid and urea cycles. We have previously shown that the regulation of myoblast differentiation is tightl...

متن کامل

Ten-Eleven Translocation-2 (Tet2) Is Involved in Myogenic Differentiation of Skeletal Myoblast Cells in Vitro

Muscle cell differentiation is a complex process that is principally governed by related myogenic regulatory factors (MRFs). DNA methylation is considered to play an important role on the expression of MRF genes and on muscle cell differentiation. However, the roles of enzymes specifically in myogenesis are not fully understood. Here, we demonstrate that Tet2, a ten-eleven translocation (Tet) m...

متن کامل

Insights into interplay between rexinoid signaling and myogenic regulatory factor-associated chromatin state in myogenic differentiation

While skeletal myogenesis is tightly coordinated by myogenic regulatory factors including MyoD and myogenin, chromatin modifications have emerged as vital mechanisms of myogenic regulation. We have previously established that bexarotene, a clinically approved agonist of retinoid X receptor (RXR), promotes the specification and differentiation of skeletal muscle lineage. Here, we examine the gen...

متن کامل

Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation

Many transcription factors and signaling molecules involved in the guidance of myogenic differentiation have been investigated in previous studies. However, the precise molecular mechanisms of myogenic differentiation remain largely unknown. In the present study, by performing a meta-analysis of C2C12 myogenic differentiation microarray data, we found that leucine-rich repeat-containing 75B (Lr...

متن کامل

Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α

BACKGROUND Circulating lipopolysaccharide (LPS) concentrations are often elevated in patients with sepsis or with various endogenous diseases that are associated with metabolic endotoxemia. Involuntary loss of skeletal muscle, termed muscle wasting, is commonly observed in these conditions, suggesting that circulating LPS might play an essential role in its development. Although impairment of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 4  شماره 

صفحات  -

تاریخ انتشار 2000