Multiple quantum phases in graphene with enhanced spin-orbit coupling: from the quantum spin Hall regime to the spin Hall effect and a robust metallic state.
نویسندگان
چکیده
We report an intriguing transition from the quantum spin Hall phase to the spin Hall effect upon segregation of thallium adatoms adsorbed onto a graphene surface. Landauer-Büttiker and Kubo-Greenwood simulations are used to access both edge and bulk transport physics in disordered thallium-functionalized graphene systems of realistic sizes. Our findings not only quantify the detrimental effects of adatom clustering in the formation of the topological state, but also provide evidence for the emergence of spin accumulation at opposite sample edges driven by spin-dependent scattering induced by thallium islands, which eventually results in a minimum bulk conductivity ∼4e²/h, insensitive to localization effects.
منابع مشابه
Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls
The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...
متن کاملQuantum spin Hall effect in graphene.
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supp...
متن کاملSpin Superfluidity in the ν=0 Quantum Hall State of Graphene.
Strong electron interactions can lead to a variety of broken-symmetry phases in monolayer graphene. In the quantum Hall regime, the interaction effect are enhanced by the formation of highly degenerate Landau levels, catalyzing the emergence of such phases. Recent magnetotransport studies show evidence that the ν=0 quantum Hall state of graphene is in an insulating canted antiferromagnetic phas...
متن کاملLow-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin
Starting from symmetry considerations and the tight-binding method in combination with first-principles calculation, we systematically derive the low-energy effective Hamiltonian involving spin-orbit coupling (SOC) for silicene. This Hamiltonian is very general because it applies not only to silicene itself but also to the low-buckled counterparts of graphene for the other group-IVA elements Ge...
متن کاملBand topology and quantum spin Hall effect in bilayer graphene
We consider bilayer graphene in the presence of spin orbit coupling, to assess its behavior as a topological insulator. The first Chern number n for the energy bands of single and bilayer graphene is computed and compared. It is shown that for a given valley and spin, n in a bilayer is doubled with respect to the monolayer. This implies that bilayer graphene will have twice as many edge states ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 113 24 شماره
صفحات -
تاریخ انتشار 2014