Distributionally Robust Convex Optimization

نویسندگان

  • Wolfram Wiesemann
  • Daniel Kuhn
  • Melvyn Sim
چکیده

Distributionally robust optimization is a paradigm for decision-making under uncertaintywhere the uncertain problem data is governed by a probability distribution that is itself subjectto uncertainty. The distribution is then assumed to belong to an ambiguity set comprising alldistributions that are compatible with the decision maker’s prior information. In this paper,we propose a unifying framework for modeling and solving distributionally robust optimizationproblems. We introduce standardized ambiguity sets that contain all distributions with pre-scribed conic representable confidence sets and with mean values residing on an affine manifold.These ambiguity sets are highly expressive and encompass many ambiguity sets from the recentliterature as special cases. They also allow us to characterize distributional families in terms ofseveral classical and/or robust statistical indicators that have not yet been studied in the contextof robust optimization. We determine conditions under which distributionally robust optimiza-tion problems based on our standardized ambiguity sets are computationally tractable. We alsoprovide tractable conservative approximations for problems that violate these conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributionally Robust Optimization for Sequential Decision Making

The distributionally robust Markov Decision Process approach has been proposed in the literature, where the goal is to seek a distributionally robust policy that achieves the maximal expected total reward under the most adversarial joint distribution of uncertain parameters. In this paper, we study distributionally robust MDP where ambiguity sets for uncertain parameters are of a format that ca...

متن کامل

A Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization

We first present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop an algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. The cutting surface algorithm is also applicable to problems with non-differentiable sem...

متن کامل

Kullback-Leibler Divergence Constrained Distributionally Robust Optimization

In this paper we study distributionally robust optimization (DRO) problems where the ambiguity set of the probability distribution is defined by the Kullback-Leibler (KL) divergence. We consider DRO problems where the ambiguity is in the objective function, which takes a form of an expectation, and show that the resulted minimax DRO problems can be formulated as a one-layer convex minimization ...

متن کامل

Data-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of the worst-case distribu...

متن کامل

Optimized Bonferroni Approximations of Distributionally Robust Joint Chance Constraints

A distributionally robust joint chance constraint involves a set of uncertain linear inequalities which can be violated up to a given probability threshold , over a given family of probability distributions of the uncertain parameters. A conservative approximation of a joint chance constraint, often referred to as a Bonferroni approximation, uses the union bound to approximate the joint chance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Operations Research

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2014