Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment

نویسندگان

  • John C. Gensel
  • Timothy J. Kopper
  • Bei Zhang
  • Michael B. Orr
  • William M. Bailey
چکیده

Spinal cord injury (SCI) triggers a heterogeneous macrophage response that when experimentally polarized toward alternative forms of activation (M2 macrophages) promotes tissue and functional recovery. There are limited pharmacological therapies that can drive this reparative inflammatory state. In the current study, we used in vitro systems to comprehensively defined markers of macrophages with known pathological (M1) and reparative (M2) properties in SCI. We then used these markers to objectively define the macrophage activation states after SCI in response to delayed azithromycin treatment. Mice were subjected to moderate-severe thoracic contusion SCI. Azithromycin or vehicle was administered beginning 30 minutes post-SCI and then daily for 3 or 7 days post injury (dpi). We detected a dose-dependent polarization toward purportedly protective M2 macrophages with daily AZM treatment. Specifically, AZM doses of 10, 40, or 160 mg/kg decreased M1 macrophage gene expression at 3 dpi while the lowest (10 mg/kg) and highest (160 mg/kg) doses increased M2 macrophage gene expression at 7 dpi. Azithromycin has documented immunomodulatory properties and is commonly prescribed to treat infections in SCI individuals. This work demonstrates the utility of objective, comprehensive macrophage gene profiling for evaluating immunomodulatory SCI therapies and highlights azithromycin as a promising agent for SCI treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats

Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cel...

متن کامل

Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord.

Macrophages dominate sites of CNS injury in which they promote both injury and repair. These divergent effects may be caused by distinct macrophage subsets, i.e., "classically activated" proinflammatory (M1) or "alternatively activated" anti-inflammatory (M2) cells. Here, we show that an M1 macrophage response is rapidly induced and then maintained at sites of traumatic spinal cord injury and t...

متن کامل

Comparison the Effectiveness of Mindfulness-based Cognitive Therapy with Acceptance & Commitment Therapy on Pain Catastrophizing & Resilience of Patients with Spinal Cord Injury

Aims and background: The aim of the present study was to compare the efficacy of MBCT with ACT on intensity of pain catastrophizing & resilience of patients with spinal cord injury. Material and Methods: The method of this study was semi-experimental with pre-test, post-test and follow up with the control group. The population of the study consisted of patients with spinal cord injury who refe...

متن کامل

The effect of Lycium barbarum on spinal cord injury, particularly its relationship with M1 and M2 macrophage in rats

BACKGROUND Our past researches suggested that L. barbarum exhibits direct neuroprotective and immune regulatory effects on the central nervous system, which are highly related to the events involved in the spinal cord injury, but not yet been investigated. Immune responses play an important role in the development of the pathology after secondary injury, particularly the M1 and M2 types of macr...

متن کامل

P 116: The Effect of Galectin-3 and Lanthionine Ketimine Ester in Neural Recovery after Spinal Cord Injury

Spinal cord injury (SCI) is a trauma that disturbs motor, sensitive and autonomic function and directly impacts the quality of life. After physical damage, releasing of pro-inflammatory proteins and cytokines occurs and with collaboration of immune system cells, an immune response begins in the brain tissue. The result of neuroinflammation is edema, apoptosis and release of axonal growth inhibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017