A Comparison of the Eigenvalues of the Dirac and Laplace Operator on the Two-dimensional Torus

نویسنده

  • ILKA AGRICOLA
چکیده

A comparison of the eigenvalues of the Dirac and Laplace operator on the two-dimensional torus. Abstract We compare the eigenvalues of the Dirac and Laplace operator on a two-dimensional torus with respect to the trivial spin structure. In particular, we compute their variation up to order 4 upon deformation of the flat metric, study the corresponding Hamiltonian and discuss several families of examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

operator on the two-dimensional torus. ∗

A comparison of the eigenvalues of the Dirac and Laplace operator on the two-dimensional torus. Abstract We compare the eigenvalues of the Dirac and Laplace operator on a two-dimensional torus with respect to the trivial spin structure. In particular, we compute their variation up to order 4 upon deformation of the flat metric, study the corresponding Hamiltonian and discuss several families of...

متن کامل

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Spectral estimates on 2-tori

We prove upper and lower bounds for the eigenvalues of the Dirac operator and the Laplace operator on 2-dimensional tori. In particluar we give a lower bound for the first eigenvalue of the Dirac operator for non-trivial spin structures. It is the only explicit estimate for eigenvalues of the Dirac operator known so far that uses information about the spin structure. As a corollary we obtain lo...

متن کامل

The Dirac Operator on Nilmanifolds and Collapsing Circle Bundles by Bernd Ammann and Christian Bär November , 1997

We compute the spectrum of the Dirac operator on 3-dimensional Heisenberg manifolds. The behavior under collapse to the 2-torus is studied. Depending on the spin structure either all eigenvalues tend to ±∞ or there are eigenvalues converging to those of the torus. This is shown to be true in general for collapsing circle bundles with totally geodesic fibers. Using the Hopf fibration we use this...

متن کامل

Asymptotic distribution of eigenvalues of the elliptic operator system

Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998