GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome.

نویسندگان

  • Jian Zhang
  • Jianyi Yang
  • Richard Jang
  • Yang Zhang
چکیده

Experimental structure determination remains difficult for G protein-coupled receptors (GPCRs). We propose a new hybrid protocol to construct GPCR structure models that integrates experimental mutagenesis data with ab initio transmembrane (TM) helix assembly simulations. The method was tested on 24 known GPCRs where the ab initio TM-helix assembly procedure constructed the correct fold for 20 cases. When combined with weak homology and sparse mutagenesis restraints, the method generated correct folds for all the tested cases with an average Cα root-mean-square deviation 2.4 Å in the TM regions. The new hybrid protocol was applied to model all 1,026 GPCRs in the human genome, where 923 have a high confidence score and are expected to have correct folds; these contain many pharmaceutically important families with no previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin, and Neuropeptide Y receptors. The results demonstrate new progress on genome-wide structure modeling of TM proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

Structure Modeling of All Identified G Protein–Coupled Receptors in the Human Genome

G protein-coupled receptors (GPCRs), encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To...

متن کامل

Designing and Analyzing the Structure of DT-STXB Fusion Protein as an Anti-tumor Agent: An in Silico Approach

Background & Objective: A main contest in chemotherapy is to obtain regulator above the biodistribution of cytotoxic drugs. The utmost promising strategy comprises of drugs coupled with a tumor-targeting bearer that results in wide cytotoxic activity and particular delivery. The B-subunit of Shiga toxin (STxB) is nontoxic and possesses low immunogenicity that exactly binds to t...

متن کامل

High-accuracy prediction of transmembrane inter-helix contacts and application to GPCR 3D structure modeling

MOTIVATION Residue-residue contacts across the transmembrane helices dictate the three-dimensional topology of alpha-helical membrane proteins. However, contact determination through experiments is difficult because most transmembrane proteins are hard to crystallize. RESULTS We present a novel method (MemBrain) to derive transmembrane inter-helix contacts from amino acid sequences by combini...

متن کامل

Chapter 11: Genome-wide protein structure prediction

The post-genomic era has witnessed an explosion of protein sequences in the public databases; but this has not been complemented by the availability of genome-wide structure and function information, due to the technical difficulties and labor expenses incurred by existing experimental techniques. The rapid advancements in computer-based protein structure prediction methods have enabled automat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Structure

دوره 23 8  شماره 

صفحات  -

تاریخ انتشار 2015