Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast
نویسندگان
چکیده
Weconsider linear divergence-form scalar elliptic equations and vectorial equations for elasticitywith rough (L∞( ), ⊂ Rd ) coefficientsa(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general case of arbitrary bounded coefficients. For such problems, we introduce explicit and optimal finite dimensional approximations of solutions that can be viewed as a theoretical Galerkin method with controlled error estimates, analogous to classical homogenization approximations. In particular, this approach allows one to analyze a given medium directly without introducing the mathematical concept of an family of media as in classical homogenization. We define the flux norm as the L2 norm of the potential part of the fluxes of solutions, which is equivalent to the usual H1-norm. We show that in the flux norm, the error associated with approximating, in a properly defined finite-dimensional space, the set of solutions of the aforementioned PDEs with rough coefficients is equal to the error associated with approximating the set of solutions of the same type of PDEs with smooth coefficients in a standard space (for example, piecewise polynomial). We refer to this property as the transfer property. A simple application of this property is the construction of finite dimensional approximation spaces with errors independent of the regularity and contrast of the coefficients and with optimal and explicit convergence rates. This transfer property also provides an alternative to the global harmonic change of coordinates for the homogenization of elliptic operators that can be extended to elasticity equations. The proofs of these homogenization results are based on a new class of elliptic inequalities. These inequalities play the same role in our approach as the div-curl lemma in classical homogenization. 678 Leonid Berlyand & Houman Owhadi
منابع مشابه
Flux Norm Approach to Homogenization Problems with Non-separated Scales
We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general ...
متن کاملFlux Norm Approach to Homogenization Problems with Non-separated Scales Leonid Berlyand and Houman Owhadi
We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L∞(Ω), Ω ⊂ R) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most gener...
متن کامل2 00 9 Flux norm approach to homogenization problems with non - separated scales
We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most g...
متن کامل. A P ] 1 3 Ju l 2 00 9 Flux norm approach to homogenization problems with non - separated scales
We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general ...
متن کاملAnalysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method
The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...
متن کامل