Weighted Bergman Kernels for Logarithmic Weights
نویسندگان
چکیده
منابع مشابه
Weighted Bergman kernels on orbifolds
We describe a notion of ampleness for line bundles on orbifolds with cyclic quotient singularities that is related to embeddings in weighted projective space, and prove a global asymptotic expansion for a weighted Bergman kernel associated to such a line bundle.
متن کاملWeighted Bergman Kernels and Quantization
Let Ω be a bounded pseudoconvex domain in C N , φ, ψ two positive functions on Ω such that − logψ,− log φ are plurisubharmonic, z ∈ Ω a point at which − log φ is smooth and strictly plurisubharmonic, and M a nonnegative integer. We show that as k → ∞, the Bergman kernels with respect to the weights φkψM have an asymptotic expansion KφkψM (x, y) = kN πNφ(x, y)kψ(x, y)M ∞ ∑ j=0 bj(x, y) k −j , b0...
متن کاملToeplitz Operators and Weighted Bergman Kernels
For a smoothly bounded strictly pseudoconvex domain, we describe the boundary singularity of weighted Bergman kernels with respect to weights behaving like a power (possibly fractional) of a defining function, and, more generally, of the reproducing kernels of Sobolev spaces of holomorphic functions of any real order. This generalizes the classical result of Fefferman for the unweighted Bergman...
متن کاملAsymptotic Behaviour of Reproducing Kernels of Weighted Bergman Spaces
Let Ω be a domain in Cn, F a nonnegative and G a positive function on Ω such that 1/G is locally bounded, Aα the space of all holomorphic functions on Ω square-integrable with respect to the measure FαGdλ, where dλ is the 2n-dimensional Lebesgue measure, and Kα(x, y) the reproducing kernel for Aα. It has been known for a long time that in some special situations (such as on bounded symmetric do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure and Applied Mathematics Quarterly
سال: 2010
ISSN: 1558-8599,1558-8602
DOI: 10.4310/pamq.2010.v6.n3.a8