Vanishing polyhedron and collapsing map

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Gauss Map with Vanishing Biharmonic Stress-energy Tensor

We study the biharmonic stress-energy tensor S2 of Gauss map. Adding few assumptions, the Gauss map with vanishing S2 would be harmonic.

متن کامل

Corner Polyhedron and Intersection Cuts

Four decades ago, Gomory introduced the corner polyhedron as a relaxation of a mixed integer set in tableau form and Balas introduced intersection cuts for the corner polyhedron. A recent paper of Andersen, Louveaux, Weismantel and Wolsey has generated a renewed interest in the corner polyhedron and intersection cuts. We survey these two approaches and the recent developments in multi-row cuts....

متن کامل

Â-genus and Collapsing

If M is a compact spin manifold, we give relationships between the vanishing of Â(M) and the possibility that M can collapse with curvature bounded below.

متن کامل

Euler's Polyhedron Formula

where V , E, and F are, respectively, the number of vertices, edges, and faces of p. The formula was first stated in print by Euler in 1758 [11]. The proof given here is based on Poincaré’s linear algebraic proof, stated in [17] (with a corrected proof in [18]), as adapted by Imre Lakatos in the latter’s Proofs and Refutations [15]. As is well known, Euler’s formula is not true for all polyhedr...

متن کامل

Vanishing Vanishing Cycles

If A• is a bounded, constructible complex of sheaves on a complex analytic space X, and f : X → C and g : X → C are complex analytic functions, then the iterated vanishing cycles φg[−1](φf [−1]A •) are important for a number of reasons. We give a formula for the stalk cohomology H∗(φg[−1]φf [−1]A •)x in terms of relative polar curves, algebra, and the normal Morse data and micro-support of A•.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2016

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-016-1793-8