UPPER AND LOWER SOLUTIONS METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS
نویسندگان
چکیده
منابع مشابه
Twin solutions to semipositone boundary value problems for fractional differential equations with coupled integral boundary conditions
This paper investigates the existence of at least two positive solutions for the following high-order fractional semipositone boundary value problem (SBVP, for short) with coupled integral boundary value conditions: D0+u(t) + λf(t,u(t), v(t)) = 0, t ∈ (0, 1), D0+v(t) + λg(t,u(t), v(t)) = 0, t ∈ (0, 1), u(j)(0) = v(j)(0) = 0, j = 0, 1, 2, · · · ,n− 2, Dα−1 0+ u(1) = λ1 ∫η1 0 v(t)...
متن کاملUpper and Lower Bounds of Solutions for Fractional Integral Equations
In this paper we consider the integral equation of fractional order in sense of Riemann-Liouville operator u(t) = a(t)I[b(t)u(t)] + f(t) with m ≥ 1, t ∈ [0, T ], T < ∞ and 0 < α < 1. We discuss the existence, uniqueness, maximal, minimal and the upper and lower bounds of the solutions. Also we illustrate our results with examples. Full text
متن کاملExistence and Uniqueness of Solutions for Nonlinear Fractional Differential Equations with Integral Boundary Conditions
In this paper, we study existence and uniqueness of solutions to nonlinear fractional differential equations with integral boundary conditions in an ordered Banach space. We use the Caputo fractional differential operator and the nonlinearity depends on the fractional derivative of an unknown function. For the existence of solutions, we employ the nonlinear alternative of Leray-Schauder and the...
متن کاملBoundary value problems for nonlinear fractional differential equations with integral and ordinary-fractional flux boundary conditions
In this paper, we consider a new class of boundary value problems of Caputo type fractional differential equations supplemented with classical/nonlocal Riemann-Liouville integral and flux boundary conditions and obtain some existence results for the given problems. The flux boundary condition x′(0) = b cDβx(1) states that the ordinary flux x′(0) at the left-end point of the interval [0, 1] is p...
متن کاملNonlinear fractional differential equations with integral boundary value conditions
and Applied Analysis 3 Lemma 2.5. Let α > 0 then
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Apllied Mathematics
سال: 2020
ISSN: 1311-1728,1314-8060
DOI: 10.12732/ijam.v33i3.8