Toward Practical Crowdsourcing-Based Road Anomaly Detection With Scale-Invariant Feature
نویسندگان
چکیده
منابع مشابه
Feature-based anomaly detection
A feature-based approach for detecting anomalies in spectral, spatial, temporal, and other domains is described. When the frequency of occurrence is small relative to the background, anomalies such as man-made objects in natural image backgrounds do not form their own clusters, but are instead assigned the nearest background cluster, becoming an outlier (statistical anomaly) in that cluster. Ou...
متن کاملAdaptive Target-scale-invariant Hyperspectral Anomaly Detection
Ground to ground, sensor to object viewing perspective presents a major challenge for autonomous window based object detection, since object scales at this viewing perspective cannot be approximated. In this paper, we present a fully autonomous parallel approach to address this challenge. Using hyperspectral (HS) imagery as input, the approach features a random sampling stage, which does not re...
متن کاملCRSM: a practical crowdsourcing-based road surface monitoring system
Detecting road potholes and road roughness levels is key to road condition monitoring, which impacts transport safety and driving comfort. We propose a crowdsourcing-based road surface monitoring system, simply called CRSM. CRSM can effectively detect road potholes and evaluate road roughness levels using hardware modules mounted on distributed vehicles. These modules use low-end accelerometers...
متن کاملToward a more practical unsupervised anomaly detection system
During the last decade, various machine learning and data mining techniques have been applied to Intrusion Detection Systems (IDSs) which have played an important role in defending critical computer systems and networks from cyber attacks. Unsupervised anomaly detection techniques have received a particularly great amount of attention because they enable construction of intrusion detection mode...
متن کاملMulti-task Feature Selection based Anomaly Detection
Network anomaly detection is still a vibrant research area. As the fast growth of network bandwidth and the tremendous traffic on the network, there arises an extremely challengeable question: How to efficiently and accurately detect the anomaly on multiple traffic? In multi-task learning, the traffic consisting of flows at different time periods is considered as a task. Multiple tasks at diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2918754