The Kaplansky condition and rings of almost stable range $1$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bézout rings with almost stable range 1 Warren

Elementary divisor domains were defined by Kaplansky [I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949) 464–491] and generalized to rings with zero-divisors by Gillman and Henriksen [L. Gillman, M. Henriksen, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. 82 (1956) 362–365]. In [M.D. Larsen, W.J. Lewis, T.S. Shores, Elementary divisor rings a...

متن کامل

Bézout Rings with Almost Stable Range 1 are Elementary Divisor Rings

Abstract. In this article we revisit a problem regarding Bézout domains, namely, whether every Bézout domain is an elementary divisor domain. Elementary divisor domains where defined by Kaplansky [13] and generalized to rings with zero-divisors by Gillman and Henriksen [7]. Later, in [14] it was shown that a domain R is an elementary divisor domain if and only if every finitely presented R-modu...

متن کامل

Quasi-Duo Rings and Stable Range Descent

In a recent paper, the first author introduced a general theory of corner rings in noncommutative rings that generalized the classical theory of Peirce decompositions. This theory is applied here to the study of the stable range of rings upon descent to corner rings. A ring is called quasi-duo if every maximal 1-sided ideal is 2-sided. Various new characterizations are obtained for such rings. ...

متن کامل

ϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES

The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...

متن کامل

Pseudo-almost valuation rings

The aim of this paper is to generalize the‎‎notion of pseudo-almost valuation domains to arbitrary‎ ‎commutative rings‎. ‎It is shown that the classes of chained rings‎ ‎and pseudo-valuation rings are properly contained in the class of‎ ‎pseudo-almost valuation rings; also the class of pseudo-almost‎ ‎valuation rings is properly contained in the class of quasi-local‎ ‎rings with linearly ordere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2013

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2013-11567-4