Tamely ramified supercuspidal representations
نویسندگان
چکیده
منابع مشابه
Tamely Ramified Extension’s Structure
The structure of an algebraic tamely ramified extension of a henselian valued field is studied. We will prove, in theorem 3.2, the following statement: A finite extension L/K is tamely ramified if and only if the field L is obtained from the maximal unramified extension T by adjoining the radicals m √ t, with t ∈ T, m ∈ N, m ≥ 1, (m, p) = 1, where p is the characteristic of the residue class fi...
متن کاملGalois groups of tamely ramified p - extensions par Nigel BOSTON
Very little is known regarding the Galois group of the maximal p-extension unramified outside a finite set of primes S of a number field in the case that the primes above p are not in S. We describe methods to compute this group when it is finite and conjectural properties of it when it is infinite.
متن کاملTamely Ramified Towers and Discriminant Bounds for Number Fields-II
The root discriminant of a number field of degree n is the nth root of the absolute value of its discriminant. Let R0(2m) be the minimal root discriminant for totally complex number fields of degree 2m, and put α0 = lim infmR0(2m). Define R1(m) to be the minimal root discriminant of totally real number fields of degree m and put α1 = lim infmR1(m). Assuming the Generalized Riemann Hypothesis, α...
متن کاملPRESENTING GALOIS GROUPS OF INFINITE TAMELY RAMIFIED p-EXTENSIONS
Let p be a rational prime and S a finite set of rational primes. We are interested in the structure of GS(p), the Galois group of the maximal p-extension of Q unramified outside S (and ∞ if p = 2). In the case that p ∈ S, many GS(p) are known explicitly [12], but in the case that p ∈ S, very little is known. Throughout this report we shall assume that p ∈ S. The author developed methods to comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales scientifiques de l'École normale supérieure
سال: 1996
ISSN: 0012-9593,1873-2151
DOI: 10.24033/asens.1750