Superhydrophobic surface of Mg alloys: A review
نویسندگان
چکیده
منابع مشابه
Surface alloying of Mg alloys after surface nanocrystallization.
Surface nanocrystallization using a surface mechanical attrition treatment effectively activates the surface of magnesium alloys due to the increase in grain boundary diffusion channels. As a result, the temperature of subsequent surface alloying treatment of pure Mg and AZ91 alloy can be reduced from 430 degrees C to 380 degrees C. Thus, it is possible to combine the surface alloying process w...
متن کاملThermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review
Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-...
متن کاملCorrosion Resistance of the Superhydrophobic Mg(OH)2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys
Coatings of the Mg(OH)2/Mg-Al layered double hydroxide (LDH) composite were formed by a combined co-precipitation method and hydrothermal process on the AZ31 alloy substrate in alkaline condition. Subsequently, a superhydrophobic surface was successfully constructed to modify the composite coatings on the AZ31 alloy substrate using stearic acid. The characteristics of the composite coatings wer...
متن کاملA Thermochromic Superhydrophobic Surface
Highly enhanced solid-state thermochromism is observed in regioregular poly(3-hexylthiophene), P3HT, when deposited on a superhydrophobic polymer-SiO2 nanocomposite coating. The conformal P3HT coating on the nanocomposite surface does not alter or reduce superhydrophicity while maintaining its reversible enhanced thermochromism. The polymeric matrix of the superhydrophobic surface is comprised ...
متن کاملQuasicrystal-reinforced Mg alloys
The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Magnesium and Alloys
سال: 2018
ISSN: 2213-9567
DOI: 10.1016/j.jma.2018.02.001