Stark effect of excitons in individual air-suspended carbon nanotubes
نویسندگان
چکیده
منابع مشابه
Screening of excitons in single, suspended carbon nanotubes.
Resonant Raman spectroscopy of single carbon nanotubes suspended across trenches displays red-shifts of up to 30 meV of the electronic transition energies as a function of the surrounding dielectric environment. We develop a simple scaling relationship between the exciton binding energy and the external dielectric function and thus quantify the effect of screening. Our results imply that the un...
متن کاملThermoacoustic transduction in individual suspended carbon nanotubes.
We report an experimental measurement of the acoustic signal emitted from an individual suspended carbon nanotube (CNT) approximate 2 μm in length, 1 nm in diameter, and 10(-21) kg in mass. This system represents the smallest thermoacoustic system studied to date. By applying an AC voltage of 1.4 V at 8 kHz to the suspended CNT, we are able to detect the acoustic signal using a commercial micro...
متن کاملPhotothermoelectric effect in suspended semiconducting carbon nanotubes.
We have performed scanning photocurrent microscopy measurements of field-effect transistors (FETs) made from individual ultraclean suspended carbon nanotubes (CNTs). We investigate the spatial-dependence, polarization-dependence, and gate-dependence of photocurrent and photovoltage in this system. While previous studies of surface-bound CNT FET devices have identified the photovoltaic effect as...
متن کاملExciton diffusion in air-suspended single-walled carbon nanotubes.
Direct measurements of the diffusion length of excitons in air-suspended single-walled carbon nanotubes are reported. Photoluminescence microscopy is used to identify individual nanotubes and to determine their lengths and chiral indices. Exciton diffusion length is obtained by comparing the dependence of photoluminescence intensity on the nanotube length to numerical solutions of diffusion equ...
متن کاملMeasurement of the optical Stark effect in semiconducting carbon nanotubes
A strong optical Stark effect has been observed in (6,5) semiconducting single-walled carbon nanotubes by femtosecond pump-probe spectroscopy. The response is characterized by an instantaneous blueshift of the excitonic resonance upon application of pump radiation at photon energy well below the band gap. The large Stark effect is attributed to the enhanced Coulomb interactions present in these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2014
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4899127