Spectral Feature Extraction Based on the DCPCA Method
نویسندگان
چکیده
منابع مشابه
A Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition
With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملA Robust Wavelet Based Feature Extraction Method
In this paper, we propose a wavelet based feature extraction method with a high tolerance to white Gaussian noise. This method is also computationally efficient. Along with an HMM classifier, this method is used for face recognition. High recognition rates in the presence of white Gaussian noises with different variances show this technique as a promising feature extraction method.
متن کاملA Fast Texture Feature Extraction Method Based on Gabor Wavelets
With the development of computer vision, robots need to detect target objects from image sequence for autonomous navigation. To identify targets, the perceptual system of autonomous robots first needs to segment the images into nonoverlapping but meaningful regions based on low-level features such as color, texture measures and shapes etc.. Being an important component, Gabor wavelets are often...
متن کاملA method for speeding up feature extraction based on KPCA
Kernel principal component analysis (KPCA) extracts features of samples with an efficiency in inverse proportion to the size of the training sample set. In this paper, we develop a novel method to improve KPCA-based feature extraction. The developed method is the first one that is methodologically consistent with KPCA. Experiments on several benchmark datasets illustrate that the feature extrac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Astronomical Society of Australia
سال: 2013
ISSN: 1323-3580,1448-6083
DOI: 10.1017/pas.2012.24