Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Integrals of Nonlinear Equations of Evolution and Solitary Waves *
In Section 1 we present a general principle for associating nonlinear equations of evolutions with linear operators so that the eigenvalues of the linear operator are integrals of the nonlinear equation. A striking instance of such a procedure is the discovery by Gardner, Miura and Kruskal that the eigenvalues of the Schrodinger operator are integrals of the Korteweg-de Vries equation. In Secti...
متن کاملSolitary Waves in Nonlinear Beam Equations: Stability, Fission and Fusion
We continue work by the second author and co-workers on solitary wave solutions of nonlinear beam equations and their stability and interaction properties. The equations are partial differential equations that are fourth-order in space and second-order in time. First, we highlight similarities between the intricate structure of solitary wave solutions for two different nonlinearities; a piecewi...
متن کاملClassification of the solitary waves in coupled nonlinear Schrijdinger equations
In this paper, the solitary waves in coupled nonlinear Schrodinger equations are classified into infinite families. For each of the first three families, the parameter region is specified and the parameter dependence of its solitary waves described and explained. We found that the parameter regions of these solution families are novel and irregular, and the parameter dependence of the solitary ...
متن کاملStrong instability of solitary waves for nonlinear Klein-Gordon equations and generalized Boussinesq equations
We study here instability problems of standing waves for the nonlinear Klein-Gordon equations and solitary waves for the generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time, depending on the range of the wave’s frequency or the wave’s speed of propagation and on the nonlinearity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
سال: 2004
ISSN: 0308-2105,1473-7124
DOI: 10.1017/s030821050000353x