SMGO: A set membership approach to data-driven global optimization

نویسندگان

چکیده

Many science and engineering applications feature non-convex optimization problems where the objective function can not be handled analytically, i.e. it is a black box. Examples include design via experiments, or costly finite elements simulations. To solve these problems, global routines are used. These iterative techniques must trade-off exploitation close to current best point with exploration of unseen regions search space. In this respect, new strategy based on Set Membership (SM) framework proposed. Assuming Lipschitz continuity cost function, approach employs SM concepts decide whether switch from an mode one, vice-versa. The resulting algorithm, named SMGO (Set Global Optimization) presented. Theoretical properties regarding convergence computational complexity derived, implementation aspects discussed. Finally, performance evaluated set benchmark compared those other approaches.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

A SET−MEMBERSHIP APPROACH TO NORMALIZED PROPORTIONATE ADAPTATION ALGORITHMS (TueAmOR12)

Proportionate adaptive filters can improve the convergence speed for the identification of sparse systems as compared to their conventional counterparts. In this paper, the idea of proportionate adaptation is combined with the framework of set−membership filtering (SMF) in an attempt to derive novel computationally efficient algorithms. The resulting algorithms attain an attractive faster conve...

متن کامل

A Chance Constraint Approach to Multi Response Optimization Based on a Network Data Envelopment Analysis

In this paper, a novel approach for multi response optimization is presented. In the proposed approach, response variables in treatments combination occur with a certain probability. Moreover, we assume that each treatment has a network style. Because of the probabilistic nature of treatment combination, the proposed approach can compute the efficiency of each treatment under the desirable reli...

متن کامل

Set-membership state estimation with fleeting data

This paper deals with offline nonlinear state estimation where measurements are available only when some given equality conditions are satisfied. For this type of problems, which are often met in robot localization when sonar or radar are involved, the data are qualified as fleeting because the measurements are available only at some given unknown dates. In this paper, the first approach able t...

متن کامل

Robust Optimization with Data Driven Asymmetric Uncertainty Set Construction

In this paper, we introduced a novel method for asymmetric uncertainty set construction based on the distributional information of sampling data. Deterministic robust counterpart optimization formulation is derived for D-norm induced uncertainty set with the proposed method. Furthermore, the asymmetric set induced robust optimization model is compared with the classical symmetric set induced ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Automatica

سال: 2021

ISSN: ['1873-2836', '0005-1098']

DOI: https://doi.org/10.1016/j.automatica.2021.109890