REMARKS ON DIMENSIONS OF CARTESIAN PRODUCT SETS
نویسندگان
چکیده
منابع مشابه
Alliance free sets in Cartesian product graphs
Let G = (V,E) be a graph. For a non-empty subset of vertices S ⊆ V , and vertex v ∈ V , let δS(v) = |{u ∈ S : uv ∈ E}| denote the cardinality of the set of neighbors of v in S, and let S = V − S. Consider the following condition: δS(v) ≥ δS(v) + k, (1) which states that a vertex v has at least k more neighbors in S than it has in S. A set S ⊆ V that satisfies Condition (1) for every vertex v ∈ ...
متن کاملOn unique minimum dominating sets in some Cartesian product graphs
Unique minimum vertex dominating sets in the Cartesian product of a graph with a complete graph are considered. We first give properties of such sets when they exist. We then show that when the first factor of the product is a tree, consideration of the tree alone is sufficient to determine if the product has a unique minimum dominating set.
متن کاملSecret Sharing Based On Cartesian product Of Graphs
The purpose of this paper is to study the information ratio of perfect secret sharing of product of some special families of graphs. We seek to prove that the information ratio of prism graphs $Y_{n}$ are equal to $frac{7}{4}$ for any $ngeq 5$, and we will gave a partial answer to a question of Csirmaz cite{CL}. We will also study the information ratio of two other families $C_{m}times C_{n}$ a...
متن کاملPacking Dimension, Hausdorff Dimension and Cartesian Product Sets
We show that the dimension adim introduced by R. Kaufman (1987) coincides with the packing dimension Dim, but the dimension aDim introduced by Hu and Taylor (1994) is different from the Hausdorff dimension. These results answer questions raised by Hu and Taylor. AMS Classification numbers: Primary 28A78, 28A80.
متن کاملRemarks on Product VMO
Well known results related to the compactness of Hankel operators of one complex variable are extended to little Hankel operators of two complex variables. Critical to these considerations is the result of Ferguson and Lacey [5] characterizing the boundedness of the little Hankel operators in terms of the product BMO of S.-Y. Chang and R. Fefferman [2,3].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractals
سال: 2016
ISSN: 0218-348X,1793-6543
DOI: 10.1142/s0218348x16500316