Regularity of solutions in semilinear elliptic theory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tornado Solutions for Semilinear Elliptic Equations in R: Regularity

We give conditions under which bounded solutions to semilinear elliptic equations ∆u = f(u) on domains of R are continuous despite a possible infinite singularity of f(u). The conditions do not require a minimization or variational stability property for the solutions. The results are used in a second paper to show regularity for a familiar class of equations.

متن کامل

Regularity of Radial Extremal Solutions of Semilinear Elliptic Equations

with φ a C∞ function with compact support in Ω. Note that Qu corresponds to the second variation of the energy associated to (1). We say that u is semi-stable if Qu(φ) ≥ 0 for all such φ. If u is bounded, this is equivalent to the nonnegativeness of the first eigenvalue in Ω of the linearized problem −∆− g′(u) of (1) at u. In [CC2] we establish sharp pointwise, L, and W k,q estimates for semi-s...

متن کامل

Multiple Nontrivial Solutions of Elliptic Semilinear Equations

We find multiple solutions for semilinear boundary value problems when the corresponding functional exhibits local splitting at zero.

متن کامل

Partial Regularity for Weak Solutions of Semilinear Elliptic Equations with Supercritical Exponents

Let Ω be an open subset in R (n ≥ 3). In this paper, we study the partial regularity for stationary positive weak solutions of the equation (1.1) ∆u + h1(x)u + h2(x)u = 0 in Ω. We prove that if α > n+2 n−2 , and u ∈ H(Ω) ∩ L(Ω) is a stationary positive weak solution of (1.1), then the Hausdorff dimension of the singular set of u is less than n−2α+1 α−1 , which generalizes the main results in Pa...

متن کامل

Singular Solutions for some Semilinear Elliptic Equations

We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of Mathematical Sciences

سال: 2016

ISSN: 1664-3607,1664-3615

DOI: 10.1007/s13373-016-0088-z