Realistic preterm prediction based on optimized synthetic sampling of EHG signal
نویسندگان
چکیده
Preterm labor is the leading cause of neonatal morbidity and mortality in newborns has attracted significant research attention from many scientific areas. The relationship between uterine contraction underlying electrical activities makes electrohysterogram (EHG) a promising direction for detecting predicting preterm births. However, due to scarcity EHG signals, especially those births, synthetic algorithms have been used generate artificial samples birth type order eliminate bias prediction towards normal delivery, at expense reducing feature effectiveness automatic detection based on machine learning. To address this problem, we quantify effect (balance coefficient) features form general performance metric by using several scores with relevant weights that describe their contributions class segregation. In combination activation/inactivation functions characterize abundance training accuracy obtained an optimal sample balance coefficient compromises removing toward majority group (i.e., delivery side importance features). A more realistic predictive was achieved through series numerical tests publicly available TPEHG database, therefore demonstrating proposed method.
منابع مشابه
Prediction of Preterm Deliveries from EHG Signals Using Machine Learning
There has been some improvement in the treatment of preterm infants, which has helped to increase their chance of survival. However, the rate of premature births is still globally increasing. As a result, this group of infants are most at risk of developing severe medical conditions that can affect the respiratory, gastrointestinal, immune, central nervous, auditory and visual systems. In extre...
متن کاملDifferentiation of Term and Preterm Delivery Groups by Ehg Signal Analysis
This article deals with the analysis of Uterine EMG (EHG) signal of a pregnant woman to reveal whether the delivery is going to be preterm or term. In the studied project, various linear and non-linear signal-processing techniques were applied to three-channel uterine EMG records to separate term and pre-term deliveries. The preterm and term signals are differentiated by performing some operati...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
application of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولEHG Signal Classification for Term and Pre-Term Pregnancy Analysis
Early prediction of premature pregnancy reduces neonatal death and helps in adoption of treatment well suited for the pre-term pregnancy state. There are scads of work done in the area of term and pre-term pregnancy analysis like artificial intelligence, regressive models, and higher order statistical models. This paper proposes a four-level decomposition of Electrohysterography (EHG) signals u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers in Biology and Medicine
سال: 2021
ISSN: ['0010-4825', '1879-0534']
DOI: https://doi.org/10.1016/j.compbiomed.2021.104644