Quantum Weighted Fractional Fourier Transform
نویسندگان
چکیده
Quantum Fourier transform (QFT) is an important part of many quantum algorithms. However, there are few reports on fractional (QFRFT). The main reason that the definitions (FRFT) diverse, while some do not include unitarity, which leads to studies pointing out no QFRFT. In this paper, we first present a reformulation weighted (WFRFT) and prove its thereby proposing (QWFRFT). proposal QWFRFT provides possibility for implementations signal processing.
منابع مشابه
Fractional Fourier Transform
Abstract The integral transform method based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problems for the time-space fractional diffusion-wave equations expressed in terms of the Caputo time-fractional derivative and the generalized Weyl space-fractional operator. The solutions, representing ...
متن کاملInvolving Fractional Fourier Transform
In this paper, some properties of pseudo-differential operators, SG-elliptic partial differential equations with polynomial coefficients and localization operators on space S ν (R), are studied by using fractional Fourier transform. AMS Mathematics Subject Classification (2010): 35S05, 46F12, 47G30.
متن کاملFractional-Fourier-transform calculation through the fast-Fourier-transform algorithm.
A method for the calculation of the fractional Fourier transform (FRT) by means of the fast Fourier transform (FFT) algorithm is presented. The process involves mainly two FFT's in cascade; thus the process has the same complexity as this algorithm. The method is valid for fractional orders varying from -1 to 1. Scaling factors for the FRT and Fresnel diffraction when calculated through the FFT...
متن کاملThe discrete fractional Fourier transform
We propose and consolidate a definition of the discrete fractional Fourier transform that generalizes the discrete Fourier transform (DFT) in the same sense that the continuous fractional Fourier transform generalizes the continuous ordinary Fourier transform. This definition is based on a particular set of eigenvectors of the DFT matrix, which constitutes the discrete counterpart of the set of...
متن کاملFractional Fourier Transform Based OFDMA for Doubly Dispersive Channels
The performance of Orthogonal Frequency Division Multiple Access (OFDMA) system degrades significantly in doubly dispersive channels. This is due to the fact that exponential sub-carriers do not match the singular functions of this type of channels. To solve this problem, we develop a system whose sub-carriers are chirp functions. This is equivalent to exploiting Fractional Fourier Transform (F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10111896