Processing Temperature Impact on TiNb<sub>2</sub>O<sub>7</sub> Thick All Active Material Lithium-Ion Battery Electrodes

نویسندگان

چکیده

Lithium-ion batteries have become a widespread energy storage technology, and research continues towards improving battery properties. One route to increase electrode areal active material loading decrease relative volume fractions of inactive components is thickness, but increasing thickness can impact mechanical stability for conventional composite electrodes. All (AAM) electrodes, including those in this work, mitigate transport limitations very thick lithium-ion Such electrodes are free polymer binders conductive additives, processed by pressing electroactive powder into porous pellet followed mild sintering improve This study investigated the processing more recent AAM TiNb 2 O 7 , which has relatively high volumetric capacity among reported materials The anode was characterized where different temperatures were used, resulting titanium niobium containing phases being present. manuscript provides insights electrochemical consequences fabricating with multicomponent oxide phases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micrometric Growth of V2O5Hexagonal Nano-plates as an Active Material for Lithium Ion Battery Cathode Electrode

This manuscript reports the synthesis of V2O5 nanostructures using reflux method, without using additives such as surface reactants. The influence of reaction parameters like temperature and concentration on the growth of nanostructures have been investigated. It has been observed that the nanostructures are formed with a hexagonal nano-plate morphology, grown from a common core. The diameter o...

متن کامل

Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes

Despite the large number of studies on the behavior of LiCoO2 in organic electrolytes and its recent application as a positive electrode in rechargeable water battery prototypes, a little information is available about the lithium intercalation reaction in this layered compound in aqueous electrolytes. This work shows that LiCoO2 electrodes can be reversibly cycled in LiNO3 aqueous electrolytes...

متن کامل

Estimation of Lithium-ion Concentrations in Both Electrodes of a Lithium-ion Battery Cell

For control and estimation tasks in battery management systems, the benchmark Li-ion cell electrochemical pseudotwo-dimensional (P2D) model is often reduced to the Single Particle Model (SPM). The original SPM consists of two electrodes approximated as spherical particles with spatially distributed Li-ion concentration. However, the Li-ion concentration states in these two-electrode models are ...

متن کامل

Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes

In this study, we report the high-yield synthesis of 2-dimensional cupric oxide (CuO) nanodiscs through dehydrogenation of 1-dimensional Cu(OH)2 nanowires at 60°C. Most of the nanodiscs had a diameter of approximately 500 nm and a thickness of approximately 50 nm. After further prolonged reaction times, secondary irregular nanodiscs gradually grew vertically into regular nanodiscs. These CuO na...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of The Electrochemical Society

سال: 2023

ISSN: ['0013-4651', '1945-7111']

DOI: https://doi.org/10.1149/1945-7111/acb403