Prediksi Penjualan Kopi Berdasarkan Cuaca Menggunakan Association Rule dan Algoritma FP Growth
نویسندگان
چکیده
Salah satu cara yang dilakukan pemilik coffee shop untuk dapat bersaing seiring peningkatan persaingan adalah dengan menyediakan varian menu kopi beragam. Bahan baku apabila disimpan terlalu lama mengakibatkan berkurangnya kualitas dan aroma harus bahan secara tepat menghindari kerugian. Pada Penelitian ini, kami mencoba menambahkan data cuaca terhadap pola penjualan menggunakan metode association rule algoritma FP-Growth. mengumpulkan transaksi historis perkiraan mulai pada bulan September sampai Maret. Atribut di kategorikan menjadi 3 kategori yaitu fair, overcast, rain. suhu dikategorikan berdasarkan rata-rata tinggi rendah panas, sedang, dingin. Data digabungkan tanggal setiap bulannya. peridoe Februari digunakan sebagai training Maret evaluasi. Hasil dari penelitian ini penambahan minimal support item meningkatkan akurasi aturan-aturan dibentuk. Aturan 4 menghasilkan 35.14% no data, 29.73% lebih atau sama 60%, kurang 60%. 5 31.25 % 56.25 12.50% Penggabungan belum terlihat pengaruh signifikan dalam pembentukan aturan asosiasi
منابع مشابه
Determination Of Coffee Content In Coffee Mixtures
The Malaysian Food Regulations 1985 [1] states that coffee mixtures must contain not less than 50 percent coffee. Caffeine content of a coffee mixture is usually used to indicate its coffee level. In this study, coffee content of coffee mixtures was determined based on caffeine concentrations using High Performance Liquid Chromatography (HPLC). Caffeine recoveries from spiked standard coffee mi...
متن کاملRare Association Rule Mining using Improved FP- Growth algorithm
Rare association rule refers to an association rule forming between frequent and rare items or among rare items. CFPgrowth approach is used to mine frequent patterns using multiple minimum support (minsup) values. This approach is an extension of FP-growth approach to multiple minsup values. This approach involves construction of MIS-tree and generating frequent patterns from the MIS-tree. The ...
متن کاملMining Weighted Association Rule using FP – tree
The main goal of association rule mining is to examine large transaction databases which reveal implicit relationship among the data attributes. Classical association rule mining model assumes that all items have same significance without assigning their weight within a transaction or record. This proposed method gives importance for the items and transactions while calculating weight on variou...
متن کاملKategorisasi dokumen web secara otomatis berdasarkan folksonomy menggunakan multinomial naive Bayes classifier
Folksonomy is a non-hierarchical document categorizing system, that treats every category in a flat manner, dan every category is entered freely by anyone who submitted a document in these categories. Categorization is done automatically at the time a document is submitted, by entering the list of categories that best fit the document. del.icio.us (http://del.icio.us) site is one of the most po...
متن کاملassociation rule mining using new fp-linked list algorithm
finding frequent patterns plays a key role in exploring association patterns, correlation, and many other interesting relationships that are applicable in tdb. several association rule mining algorithms such as apriori, fp-growth, and eclat have been proposed in the literature. fp-growth algorithm construct a tree structure from transaction database and recursively traverse this tree to extract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Media Sistem Informasi
سال: 2023
ISSN: ['2527-7340', '1978-8126']
DOI: https://doi.org/10.33998/mediasisfo.2023.17.1.724