Polynomially Bounded Cosine Functions
نویسندگان
چکیده
منابع مشابه
Polynomially bounded C0-semigroups
We characterize generators of polynomially bounded C0-semigroups in terms of an integrability condition for the second power of the resolvent on vertical lines. This generalizes results by Gomilko, Shi and Feng on bounded semigroups and by Malejki on polynomially bounded groups.
متن کاملInfinitely Peano differentiable functions in polynomially bounded o-minimal structures
Let R be an o-minimal expansion of a real closed field. We show that the definable infinitely Peano differentiable functions are smooth if and only if R is polynomially bounded.
متن کاملInfinite Peano Differentiable Functions in Polynomially Bounded O-minimal Structures
Let R be an o-minimal expansion of a real closed field. We show that the definable infinitely Peano differentiable functions are smooth if and only if R is polynomially bounded.
متن کاملPolynomially Bounded Recursive Realizability
A polynomially bounded recursive realizability, in which the recursive functions used in Kleene’s realizability are restricted to polynomially bounded functions, is introduced. It is used to show that provably total functions of Ruitenburg’s Basic Arithmetic are polynomially bounded (primitive) recursive functions. This sharpens our earlier result where those functions were proved to be primiti...
متن کاملPolynomially Bounded Matrix Interpretations
Matrix interpretations can be used to bound the derivational complexity of rewrite systems. We present a criterion that completely characterizes matrix interpretations that are polynomially bounded. It includes the method of upper triangular interpretations as a special case, and we prove that the inclusion is strict. The criterion can be expressed as a finite domain constraint system. It trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis in Theory and Applications
سال: 2012
ISSN: 1672-4070,1573-8175
DOI: 10.4208/ata.2012.v28.n1.2