Perturbed Kirchhoff-type Neumann problems in Orlicz–Sobolev spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singularly perturbed Neumann problems with potentials

Such a problem was intensively studied in several works. For example, Ni & Takagi, in [11, 12], show that, for ε sufficiently small, there exists a solution uε of (2) which concentrates in a point Qε ∈ ∂Ω andH(Qε) → max∂ΩH , here H denotes the mean curvature of ∂Ω. Moreover in [10], using the LiapunovSchmidt reduction, Li constructs solutions with single peak and multi-peaks on ∂Ω located near ...

متن کامل

Infinitely Many Solutions for Kirchhoff Type Problems with Nonlinear Neumann Boundary Conditions

In this article, we study a Kirchhoff type problem with nonlinear Neumann boundary conditions on a bounded domain. By using variational methods, we prove the existence of infinitely many solutions.

متن کامل

Existence of Infinitely Many Solutions for Perturbed Kirchhoff Type Elliptic Problems with Hardy Potential

In this article, by using critical point theory, we show the existence of infinitely many weak solutions for a fourth-order Kirchhoff type elliptic problems with Hardy potential.

متن کامل

Higher Order Energy Expansions for Some Singularly Perturbed Neumann Problems

We consider the following singularly perturbed semilinear elliptic problem: 2 u ? u + u p = 0 in ; u > 0 in and @u @ = 0 on @; where is a bounded smooth domain in R N , > 0 is a small constant and p is a sub-critical exponent. Let J u] := R (2 2 jruj 2 + 1 2 u 2 ? 1 p+1 u p+1)dx be its energy functional, where u 2 H 1 ((). Ni and Takagi ((15], 16]) proved that for a single boundary spike soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2016

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2016.03.019