On the orientable genus of graphs with bounded nonorientable genus
نویسندگان
چکیده
منابع مشابه
On the orientable genus of graphs with bounded nonorientable genus
A conjecture of Robertson and Thomas on the orientable genus of graphs with a given nonorientable embedding is disproved.
متن کاملThe nonorientable genus of complete tripartite graphs
In 1976, Stahl and White conjectured that the nonorientable genus of Kl,m,n, where l ≥ m ≥ n, is (l−2)(m+n−2) 2 . The authors recently showed that the graphs K3,3,3 , K4,4,1, and K4,4,3 are counterexamples to this conjecture. Here we prove that apart from these three exceptions, the conjecture is true. In the course of the paper we introduce a construction called a transition graph, which is cl...
متن کاملTutte's 5-flow conjecture for graphs of nonorientable genus 5
We develop four constructions for nowhere-zero 5-ows of 3-regular graphs which satisfy special structural conditions. Using these constructions we show a minimal counterexample to Tutte's 5-ow conjecture is of order 44 and therefore every bridgeless graph of nonorientable genus 5 has a nowhere-zero 5-ow. One of the structural properties is formulated in terms of the structure of the multigraph ...
متن کاملThe Bidimensional Theory of Bounded-Genus Graphs
Bidimensionality is a powerful tool for developing subexponential fixed-parameter algorithms for combinatorial optimization problems on graph families that exclude a minor. This paper completes the theory of bidimensionality for graphs of bounded genus (which is a minorexcluding family). Specifically we show that, for any problem whose solution value does not increase under contractions and who...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1998
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(97)00144-1