On the orientable genus of graphs with bounded nonorientable genus

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the orientable genus of graphs with bounded nonorientable genus

A conjecture of Robertson and Thomas on the orientable genus of graphs with a given nonorientable embedding is disproved.

متن کامل

The nonorientable genus of complete tripartite graphs

In 1976, Stahl and White conjectured that the nonorientable genus of Kl,m,n, where l ≥ m ≥ n, is (l−2)(m+n−2) 2 . The authors recently showed that the graphs K3,3,3 , K4,4,1, and K4,4,3 are counterexamples to this conjecture. Here we prove that apart from these three exceptions, the conjecture is true. In the course of the paper we introduce a construction called a transition graph, which is cl...

متن کامل

Tutte's 5-flow conjecture for graphs of nonorientable genus 5

We develop four constructions for nowhere-zero 5-ows of 3-regular graphs which satisfy special structural conditions. Using these constructions we show a minimal counterexample to Tutte's 5-ow conjecture is of order 44 and therefore every bridgeless graph of nonorientable genus 5 has a nowhere-zero 5-ow. One of the structural properties is formulated in terms of the structure of the multigraph ...

متن کامل

The Bidimensional Theory of Bounded-Genus Graphs

Bidimensionality is a powerful tool for developing subexponential fixed-parameter algorithms for combinatorial optimization problems on graph families that exclude a minor. This paper completes the theory of bidimensionality for graphs of bounded genus (which is a minorexcluding family). Specifically we show that, for any problem whose solution value does not increase under contractions and who...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1998

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(97)00144-1