On the measure contraction property of metric measure spaces
نویسندگان
چکیده
منابع مشابه
Marked Metric Measure Spaces
A marked metric measure space (mmm-space) is a triple (X , r,μ), where (X , r) is a complete and separable metric space and μ is a probability measure on X × I for some Polish space I of possible marks. We study the space of all (equivalence classes of) marked metric measure spaces for some fixed I . It arises as a state space in the construction of Markov processes which take values in random ...
متن کاملDiffusion polynomial frames on metric measure spaces
We construct a multiscale tight frame based on an arbitrary orthonormal basis for the L2 space of an arbitrary sigma finite measure space. The approximation properties of the resulting multiscale are studied in the context of Besov approximation spaces, which are characterized both in terms of suitable K–functionals and the frame transforms. The only major condition required is the uniform boun...
متن کاملQuasi-metric Spaces with Measure
The phenomenon of concentration of measure on high dimensional structures is usually stated in terms of a metric space with a Borel measure, also called an mm-space. We extend some of the mm-space concepts to the setting of a quasi-metric space with probability measure (pq-space). Our motivation comes from biological sequence comparison: we show that many common similarity measures on biologica...
متن کاملDifferentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property
In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...
متن کاملFunctions on Localized BMO Spaces over Doubling Metric Measure Spaces
Let X be a doubling metric measure space. In this paper, the authors introduce the notions of Property (M̃) and Property (P ) of X , prove that Property (M̃) implies Property (P ) and give some equivalent characterizations of Property (M̃) and Property (P ). If X has Property (P ), the authors then establish the boundedness of the Lusin-area function, which is defined via kernels modeled on the se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Commentarii Mathematici Helvetici
سال: 2007
ISSN: 0010-2571
DOI: 10.4171/cmh/110