منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولon the goursat problem for a linear partial differential equation
in this paper, the goursat problem of a general form for a linear partial differential equation is investigated with the help of the riemann function method. some results are given concerning the existence and uniqueness for the solution of the suggested problem.
متن کاملOn the Levi problem with singularities
Is a complex space X which is the union of an increasing sequence X1 ⊂ X2 ⊂ X3 ⊂ · · · of open Stein subspaces itself a Stein space ? From the begining this question has held great interest in Stein theory. The special case when {Xj}j≥1 is a sequence of Stein domains in I C n had been proved long time ago by Behnke and Stein [2]. In 1956, Stein [13] answered positively the question under the ad...
متن کاملThe Bang-bang Principle for the Goursat-darboux Problem*
In the paper, the bang-bang principle for a control system connected with a system of linear nonautonomous partial differential equations of hyperbolic type (the socalled Goursat-Darboux problem or continuous Fornasini-Marchesini problem) is proved. Some density result is also obtained.
متن کاملGeneralized Solutions of a Periodic Goursat Problem
Under reasonable assumptions on the data u, v and the function f , we show that the nonlinear periodic Goursat problem ∂u ∂x∂y (x, y) = f(x, y, u(x, y)); u(x, 0) = v(x); u(0, y) = w(y) which cannot be posed in the general theory of distributions, may be studied and solved in a differential algebra of periodic new generalized functions on R2. This algebra contains, in a canonical way, the space ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 1987
ISSN: 2156-2261
DOI: 10.1215/kjm/1250520761