On the fractional chromatic number of monotone self-dual Boolean functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Fractional Chromatic Number of Monotone Self-dual Boolean Functions

We compute the exact fractional chromatic number for several classes of monotone self-dual Boolean functions. We characterize monotone self-dual Boolean functions in terms of the optimal value of a LP relaxation of a suitable strengthening of the standard IP formulation for the chromatic number. We also show that determining the self-duality of monotone Boolean function is equivalent to determi...

متن کامل

Partial Clones Containing all Boolean Monotone Self-dual Partial Functions

The study of partial clones on 2 := {0, 1} was initiated by R. V. Freivald. In his fundamental paper published in 1966, Freivald showed, among other things, that the set of all monotone partial functions and the set of all self-dual partial functions are both maximal partial clones on 2. Several papers dealing with intersections of maximal partial clones on 2 have appeared after Freivald work. ...

متن کامل

On Learning Monotone Boolean Functions

Abstract We consider the problem of learning monotone Boolean functions over under the uniform distribution. Specifically, given a polynomial number of uniform random samples for an unknown monotone Boolean function , and given polynomial computing time, we would like to approximate as well as possible. We describe a simple algorithm that we prove achieves error at most , improving on the previ...

متن کامل

Influences of monotone Boolean functions

Recently, Keller and Pilpel conjectured that the influence of a monotone Boolean function does not decrease if we apply to it an invertible linear transformation. Our aim in this short note is to prove this conjecture.

متن کامل

Ceilings of Monotone Boolean Functions

This paper considers a particular relationship defined over pairs of n-argument monotone Boolean functions. The relationship is of interest since we can show that if ( g, h ) satisfy it then for any n-argument monotone Boolean function f there is a close relationship between the combinational and monotone network complexities of the function (f /\ g) \/ h. We characterise the class of pairs of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2009

ISSN: 0012-365X

DOI: 10.1016/j.disc.2008.01.028