On some Banach lattice-valued operators: A Survey
نویسندگان
چکیده
منابع مشابه
Some Properties of b-Weakly Compact Operators on Banach lattice
We investigate the sufficient condition under which each positive b-weakly compact operator is Dunford-Pettis. We also investigate the necessary condition on which each positive b-weakly compact operator is Dunford-Pettis. Necessary condition on which each positive b-weakly compact operator is weakly compact is also considered. We give the operator that is semi-compact, but it is not bweakly. W...
متن کاملConvolution Operators on Banach Space Valued Functions.
The purpose of this paper is to obtain systematically certain classical inequalities concerning the Hilbert transform, the function g of Littlewood and Paley, their generalizations to several variables, and related results.t This we accomplish by establishing certain inequalities for convolution operators on Banach space valued functions. Given a Banach space B, If I will denote the norm of the...
متن کاملOn some properties of Banach operators. II
Using the notion of a Banach operator, we have obtained a decompositional property of a Hilbert space, and the equality of two invertible bounded linear multiplicative operators on a normed algebra with identity. 1. Introduction. This paper is a continuation of our earlier work [7] on Banach operators. We recall that if X is a normed space and α : X → X is a mapping, then following [4], α is sa...
متن کاملOn Some Properties of Banach Operators
A mapping α from a normed space X into itself is called a Banach operator if there is a constant k such that 0≤ k < 1 and ‖α2(x)−α(x)‖ ≤ k‖α(x)−x‖ for all x ∈X. In this note we study some properties of Banach operators. Among other results we show that if α is a linear Banach operator on a normed space X, then N(α−1) = N((α−1)2), N(α−1)∩R(α−1)= (0) and if X is finite dimensional then X =N(α−1)⊕...
متن کاملSome properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in the Theory of Nonlinear Analysis and its Application
سال: 2018
ISSN: 2587-2648
DOI: 10.31197/atnaa.338349