On Robust Solutions to Uncertain Linear Complementarity Problems and their Variants
نویسندگان
چکیده
منابع مشابه
Robust solutions of Linear Programming problems contaminated with uncertain data
Optimal solutions of Linear Programming problems may become severely infeasible if the nominal data is slightly perturbed. We demonstrate this phenomenon by studying 90 LPs from the well-known NETLIB collection. We then apply the Robust Optimization methodology (Ben-Tal and Nemirovski [1-3]; El Ghaoui et al. [5,6]) to produce “robust” solutions of the above LPs which are in a sense immuned agai...
متن کاملSparse solutions of linear complementarity problems
This paper considers the characterization and computation of sparse solutions and leastp-norm (0 < p < 1) solutions of the linear complementarity problems LCP(q,M). We show that the number of non-zero entries of any least-p-norm solution of the LCP(q,M) is less than or equal to the rank of M for any arbitrary matrix M and any number p ∈ (0, 1), and there is p̄ ∈ (0, 1) such that all least-p-norm...
متن کاملIntegral Solutions of Linear Complementarity Problems
We characterize the class of integral square matrices M having the property that for every integral vector q the linear complementarity problem with data M; q has only integral basic solutions. These matrices, called principally unimodular matrices, are those for which every principal nonsingular submatrix is unimodular. As a consequence , we show that if M is rank-symmetric and principally uni...
متن کاملRobust solutions of uncertain linear programs
We treat in this paper Linear Programming (LP) problems with uncertain data. The focus is on uncertainty associated with hard constraints: those which must be satisfied, whatever is the actual realization of the data (within a prescribed uncertainty set). We suggest a modeling methodology whereas an uncertain LP is replaced by its Robust Counterpart (RC). We then develop the analytical and comp...
متن کاملAdjustable robust solutions of uncertain linear programs
We consider linear programs with uncertain parameters, lying in some prescribed uncertainty set, where part of the variables must be determined before the realization of the uncertain parameters (”non-adjustable variables”), while the other part are variables that can be chosen after the realization (”adjustable variables”). We extend the Robust Optimization methodology ([1, 3, 4, 5, 6, 9, 13, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2016
ISSN: 1052-6234,1095-7189
DOI: 10.1137/15m1010427