On Jordan Triple α-*Centralizers Of Semiprime Rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centralizers on semiprime rings

The main result: Let R be a 2-torsion free semiprime ring and let T : R → R be an additive mapping. Suppose that T (xyx) = xT (y)x holds for all x, y ∈ R. In this case T is a centralizer.

متن کامل

Centralizers on prime and semiprime rings

The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let R be a noncommutative prime ring of characteristic different from two and let S and T be left centralizers on R. Suppose that [S(x), T (x)]S(x) + S(x)[S(x), T (x)] = 0 is fulfilled for all x ∈ R. If S 6= 0 (T 6= 0) then there exists λ from the extende...

متن کامل

On Θ-centralizers of Semiprime Rings (ii)

The following result is proved: Let R be a 2-torsion free semiprime ring, and let T : R → R be an additive mapping, related to a surjective homomorphism θ : R → R, such that 2T (x2) = T (x)θ(x) + θ(x)T (x) for all x ∈ R. Then T is both a left and a right θ-centralizer.

متن کامل

Generalized Jordan Triple Higher ∗−Derivations on Semiprime Rings

Let R be an associative ring not necessarily with identity element. For any x, y ∈ R. Recall that R is prime if xRy = 0 implies x = 0 or y = 0, and is semiprime if xRx = 0 implies x = 0. Given an integer n ≥ 2, R is said to be n−torsion free if for x ∈ R, nx = 0 implies x = 0.An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R, and it is called a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2014

ISSN: 2391-4661,0420-1213

DOI: 10.2478/dema-2014-0010