Numerical Simulation of Steady Supersonic Viscous Flow
نویسندگان
چکیده
منابع مشابه
direct numerical simulation of supersonic and transonic compressible viscous flow by kinetic energy preserving scheme
present paper investigates the numerical solution of two-dimensional unsteady compressible navier-stokes equations by a new scheme based on the finite volume method. kinetic energy preserving (kep) scheme is introduced for solving the supersonic and transonic external compressible flow field on very fine grids (with a number of cells of the order of the reynolds number) without artificial dissi...
متن کاملNumerical Simulation of Supersonic Gap Flow
Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe f...
متن کاملNon-reflection Boundary Conditions for Numerical Simulation of Supersonic Flow
This article presents the boundary conditions for the problem of turbulent supersonic gas flow in a plane channel with a perpendicular injection jets. The non-reflection boundary conditions for direct modeling of compressible viscous gases are studied. A formulation using the NSCBC (NavierStocks characteristic boundary conditions) through boundaries is derived for the subsonic inflow and subson...
متن کاملTurbulent Supersonic Channel Flow: Direct Numerical Simulation and Modeling
a = mean speed of sound, R T 1=2 aw = mean speed of sound at the wall, RTw 1=2 C = turbulent viscosity parameter, T= Lk cp = specific heat at constant pressure, R= 1 ; 1004:5 J= kg K cv = specific heat at constant volume, R= 1 ; 717:5 J= kg K f = uniform body force, w=h h = half channel height hw = wall length scale, h=Re i = turbulence intensity, 2k=3 = U1 k = turbulent kinetic energy, uiui=2 ...
متن کاملNumerical simulation of flow hydrodynamic around dolphin body in viscous fluid
The biomimetic and hydrodynamic study of aquatic animals is one of the most challenging computational fluid dynamics topics in recent studies due to the complexity of body geometry and the type of flow field. The movement of the aquatic body, and particularly the tail section and the corresponding movement of fluid around the body, causes an unsteady flow and requires a comprehensive study of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIAA Journal
سال: 1980
ISSN: 0001-1452,1533-385X
DOI: 10.2514/3.50902