Numerical Schubert Calculus

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certifiable Numerical Computations in Schubert Calculus

Traditional formulations of geometric problems from the Schubert calculus, either in Plücker coordinates or in local coordinates provided by Schubert cells, yield systems of polynomials that are typically far from complete intersections and (in local coordinates) typically of degree exceeding two. We present an alternative primal-dual formulation using parametrizations of Schubert cells in the ...

متن کامل

Schubert Calculus and Puzzles

1. Interval positroid varieties 1 1.1. Schubert varieties 1 1.2. Schubert calculus 2 1.3. First positivity result 3 1.4. Interval rank varieties 5 2. Vakil’s Littlewood-Richardson rule 7 2.1. Combinatorial shifting 7 2.2. Geometric shifting 7 2.3. Vakil’s degeneration order 9 2.4. Partial puzzles 10 3. Equivariant and Kextensions 11 3.1. K-homology 11 3.2. K-cohomology 12 3.3. Equivariant K-the...

متن کامل

Equivariant Quantum Schubert Calculus

We study the T−equivariant quantum cohomology of the Grassmannian. We prove the vanishing of a certain class of equivariant quantum Littlewood-Richardson coefficients, which implies an equivariant quantum Pieri rule. As in the equivariant case, this implies an algorithm to compute the equivariant quantum Littlewood-Richardson coefficients.

متن کامل

Contemporary Schubert Calculus and Schubert Geometry

Schubert calculus refers to the calculus of enumerative geometry, which is the art of counting geometric figures determined by given incidence conditions. For example, how many lines in projective 3-space meet four given lines? This was developed in the 19th century and presented in the classic treatise ”Kälkul der abzählanden Geometrie” by Herman Cäser Hannibal Schubert in 1879. Schubert, Pier...

متن کامل

Eigenvalues and Schubert Calculus

We describe recent work of Klyachko, Totaro, Knutson, and Tao, that characterizes eigenvalues of sums of Hermitian matrices, and decomposition of tensor products of representations of GLn(C). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 1998

ISSN: 0747-7171

DOI: 10.1006/jsco.1998.0239