Neighbor-locating coloring: graph operations and extremal cardinalities
نویسندگان
چکیده
منابع مشابه
Locating dominating codes: Bounds and extremal cardinalities
In this work, two types of codes such that they both dominate and locate the vertices of a graph are studied. Those codes might be sets of detectors in a network or processors controlling a system whose set of responses should determine a malfunctioning processor or an intruder. Here, we present our more significant contributions on λ-codes and η-codes concerning concerning bounds, extremal val...
متن کاملExtremal cardinalities for identifying and locating-dominating codes in graphs
Consider a connected undirected graph G = (V ,E), a subset of vertices C ⊆ V , and an integer r 1; for any vertex v ∈ V , let Br(v) denote the ball of radius r centred at v, i.e., the set of all vertices linked to v by a path of at most r edges. If for all vertices v ∈ V (respectively, v ∈ V \C), the setsBr(v)∩C are all nonempty and different, then we call C an r-identifying code (respectively,...
متن کاملGraph Operations and Neighbor Rupture Degree
In a communication network, the vulnerability parameters measure the resistance of the network to disruption of operation after the failure of certain stations or communication links. A vertex subversion strategy of a graphG, say S, is a set of vertices inGwhose closed neighborhood is removed from G. The survival subgraph is denoted by G/S. The neighbor rupture degree of G, Nr(G), is defined to...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولOn exponential domination and graph operations
An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Notes in Discrete Mathematics
سال: 2018
ISSN: 1571-0653
DOI: 10.1016/j.endm.2018.06.023