Naturality of symmetric imprimitivity theorems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Imprimitivity Theorems for Graph C∗-algebras

The C∗-algebra C∗(E) of a directed graph E is generated by partial isometries satisfying relations which reflect the path structure of the graph. In [10], Kumjian and Pask considered the action of a group G on C∗(E) induced by an action of G on E. They proved that if G acts freely and E is locally finite, then the crossed product C∗(E) × G is Morita equivalent to the C∗-algebra of the quotient ...

متن کامل

Naturality of Abel maps

We give a combinatorial characterization of nodal curves admitting a natural (i.e. compatible with and independent of specialization) d-th Abel map for any d ≥ 1. Let X be a smooth projective curve and d a positive integer; the classical d-th Abel map of X , αX : X d −→ PicX , associates to (p1, . . . , pd) ∈ X the class of the line bundle OX(p1 + . . .+ pd) in Pic d X . Such a morphism has goo...

متن کامل

Factorization Theorems on Symmetric

We prove the analogs of the Khinchin factorization theorems for K-invariant probability measures on symmetric spaces X = G=K with G semisimple noncompact. We use the Kendall theory of delphic semigroups and some properties of the spherical Fourier transform and spherical functions on X.

متن کامل

Naturality and Definability, I

Eilenberg and Mac Lane [1] explained the notion of a 'natural' embedding by giving a categorical definition. Starting from their examples, we argue that one could equally well explain natural as meaning 'uniformly definable in set theory'. But do the categorically natural embeddings coincide with the uniformly definable ones? This is partly a technical question about whether certain well-known ...

متن کامل

Limit Preservation from Naturality

A functor G : C → D is said to preserve limits of a diagram D : I → C if it sends any limiting cone from x to D to a limiting cone from G(x) to G◦D. When G preserves limits of a diagram D this entails directly that there is an isomorphism G(lim ←−ID) ∼= lim ←−I(G ◦D) between objects. In general, such an isomorphism alone is not sufficient to ensure that G preserves limits. This paper shows how,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2013

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2013-11712-0