Multitask Quantile Regression Under the Transnormal Model
نویسندگان
چکیده
منابع مشابه
Flexible parametric quantile regression model
This article introduces regression quantile models using both RS and FKML generalised lambda distributions (GLD) and demonstrates the versatility of proposed models for a range of linear/non linear and heteroscedastic/homoscedastic empirical data. Owing to the rich shapes of GLDs, GLD quantile regression is a competitive flexible model compared to standard quantile regression. The proposed meth...
متن کاملNonlinear Quantile Regression under Dependence and Heterogeneity
This paper derives the asymptotic normality of the nonlinear quantile regression estimator with dependent errors. The required assumptions are weak, and it is neither assumed that the error process is stationary nor that it is mixing. In fact, the notion of weak dependence introduced in this paper, can be considered as a quantile specific local variant of known concepts. The connection of the d...
متن کاملEXTREMAL QUANTILE REGRESSION 3 quantile regression
Quantile regression is an important tool for estimation of conditional quantiles of a response Y given a vector of covariates X. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. This paper develops a theory of quantile regression in the tails. Specifically , it obtains the large sample properties of extremal (ext...
متن کاملModel selection in quantile regression models
Lasso methods are regularization and shrinkage methods widely used for subset selection and estimation in regression problems. From a Bayesian perspective, the Lasso-type estimate can be viewed as a Bayesian posterior mode when specifying independent Laplace prior distributions for the coefficients of independent variables (Park and Casella, 2008). A scale mixture of normal priors can also prov...
متن کاملEstimation of single-index quantile regression Model
Abstract The conditional quantile function m(X) of response variable Y given the value of covariate X is modeled through a single-index model, i.e. m(X) = m(θ 0 X) for some unknown parameter vector θ0. An iterated algorithm is proposed to estimate θ0. To establish the root-n consistency of the estimator, we prove a convexity lemma for almost sure convergence, parallel to the results by Pollard ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2016
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2015.1113973