Multipotentializations and nonlocal symmetries: Kupershmidt, Kaup-Kupershmidt and Sawada-Kotera equations
نویسندگان
چکیده
منابع مشابه
Broer-Kaup-Kupershmidt Equations
and Applied Analysis 3 (2) If 0 < g < g0, we get a solitary wave solution u6 ( x, y, t ) c (√ 2 α − 1 β cosh θ ( x y − ct )) α − 1 ( 1 β − cosh 2θ ( x y − ct )) α ( −1 α β − α − 1 cosh 2θ ( x y − ct )) , 2.4 and two blow-up solutions u7± ( x, y, t ) c ( α ( 2 β ) − 2 − 2 α − 1 cosh θ ( x y − ct ) ± β 3/2 coth θ/2 ( x y − ct )) 2α ( −1 α β − α − 1 cosh θ ( x y − ct )) , 2.5 where β 6 − 6α α2 and...
متن کاملLiouville Correspondences between Integrable Hierarchies
In this paper, we study explicit correspondences between the integrable Novikov and Sawada–Kotera hierarchies, and between the Degasperis–Procesi and Kaup–Kupershmidt hierarchies. We show how a pair of Liouville transformations between the isospectral problems of the Novikov and Sawada–Kotera equations, and the isospectral problems of the Degasperis–Procesi and Kaup–Kupershmidt equations relate...
متن کاملThe Generalized Broer-Kaup-Kupershmidt System and its Hamiltonian Extension
Abstract The generalized Broer-Kaup-Kupershmidt (generalized BKK) isospectral problem, including the x-derivative of potential, is considered based on Lie algebra A1. The variational trace identity is extended to construct Hamiltonian structure of generalized BKK system. The Lie algebra A1 is extended to the non-semi-simple Lie algebra of 4 × 4 matrix form, from which a hierarchy of soliton equ...
متن کاملA multiple Riccati equations rational expansion method and novel solutions of the Broer–Kaup–Kupershmidt system
To construct exact solutions of nonlinear partial differential equation, a multiple Riccati equations rational expansion method (MRERE) is presented and a series of novel solutions of the Broer–Kaup–Kupershmidt system are found. The novel solutions obtained by MRERE method include solutions of hyperbolic (solitary) function and triangular periodic functions appearing at the same time. 2005 Else...
متن کاملElliptic Solitons and the Gröbner Bases
We consider the solution of spectral problems with elliptic potentials in the framework of the Hermite ansatz. We show that the search for potentials and their spectral characteristics is reduced to a system of polynomial equations solvable by the Gröbner bases method and others. New potentials and corresponding solutions of the Sawada–Kotera, Kaup–Kupershmidt, Boussinesq equations are found.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Mathematical Physics
سال: 2021
ISSN: 1776-0852
DOI: 10.1080/14029251.2017.1341694